1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mediating effect of vascular calcification in galectin-3-related mortality in hemodialysis patients

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Galectin-3 levels have been studied as a potential biomarker for predicting cardiovascular (CV) risk and mortality in hemodialysis (HD) patients. Recently, a close relationship between galectin-3 and vascular calcification (VC) has been reported. Here, we investigated the role of VC as a mediating factor in the association between galectin-3 and mortality. Serum galectin-3 and baseline aortic arch calcification (AoAC) score were measured in 477 incident HD patients. Mortality data were obtained at a median follow-up of 40 months. Causal mediation analysis was performed to examine the effect of vascular risk factors on galectin-3-related mortality. The prevalence of AoAC in HD patients was 57% (n = 272), and elevated galectin-3 levels were associated with a significantly increased risk of AoAC. When the galectin-3 level was divided by the median level of 37 ng/mL, a higher galectin group increased the risk of all-cause mortality by 1.71-fold (95% CI 1.02–2.92, p = 0.048), even after adjustment for multiple CV risk factors. Mediation analysis showed that both the direct effect of the galectin-3 on mortality (β = 0.0368, bootstrapped 95% CI [0.0113–0.0622]) and the indirect effects were significant. AoAC score and high-sensitivity CRP levels significantly mediated the association between galectin-3 and mortality (total indirect effects: β = 0.0188, bootstrapped 95% CI [0.0066–0.0352]). This study suggests that the association between high galectin-3 and mortality may be partially mediated by higher VC and inflammatory state in HD patients.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Cardiovascular disease in dialysis patients

          Abstract Cardiovascular disease (CVD) is a highly common complication and the first cause of death in patients with end-stage renal disease (ESRD) on haemodialysis (HD). In this population, mortality due to CVD is 20 times higher than in the general population and the majority of maintenance HD patients have CVD. This is likely due to ventricular hypertrophy as well as non-traditional risk factors, such as chronic volume overload, anaemia, inflammation, oxidative stress, chronic kidney disease–mineral bone disorder and other aspects of the ‘uraemic milieu’. Better understanding the impact of these numerous factors on CVD would be an important step for prevention and treatment. In this review we focus non-traditional CVD risk factors in HD patients.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Galectins: regulators of acute and chronic inflammation.

            Galectins, beta-galactoside-binding animal lectins, are differentially expressed by various immune cells as well as a wide range of other cell types. Extracellularly, galectins are able to exhibit bivalent or multivalent interactions with cell-surface glycans on various immune cells and exert various effects. These include cytokine and mediator production, cell adhesion, apoptosis, and chemoattraction. In addition, they can form lattices with cell-surface glycoprotein receptors, resulting in modulation of receptor functions, including clustering and endocytosis. Intracellularly, galectins can participate in signaling pathways and modulate biologic responses. These include apoptosis, cell differentiation, and cell migration. Thus, a large body of literature indicates that galectins play important roles in the immune and inflammatory responses through regulating the homeostasis and functions of immune cells. The use of mice deficient in individual galectins has provided additional evidence for the contributions of these proteins to these responses. Current research indicates that galectins play important roles in the development of acute inflammation as well as chronic inflammation associated with allergies, autoimmune diseases, atherosclerosis, infectious processes, and cancer. Thus, recombinant proteins or specific galectin inhibitors may be used as therapeutic agents for inflammatory diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Vascular Calcification—New Insights into Its Mechanism

              Vascular calcification (VC), which is categorized by intimal and medial calcification, depending on the site(s) involved within the vessel, is closely related to cardiovascular disease. Specifically, medial calcification is prevalent in certain medical situations, including chronic kidney disease and diabetes. The past few decades have seen extensive research into VC, revealing that the mechanism of VC is not merely a consequence of a high-phosphorous and -calcium milieu, but also occurs via delicate and well-organized biologic processes, including an imbalance between osteochondrogenic signaling and anticalcific events. In addition to traditionally established osteogenic signaling, dysfunctional calcium homeostasis is prerequisite in the development of VC. Moreover, loss of defensive mechanisms, by microorganelle dysfunction, including hyper-fragmented mitochondria, mitochondrial oxidative stress, defective autophagy or mitophagy, and endoplasmic reticulum (ER) stress, may all contribute to VC. To facilitate the understanding of vascular calcification, across any number of bioscientific disciplines, we provide this review of a detailed updated molecular mechanism of VC. This encompasses a vascular smooth muscle phenotypic of osteogenic differentiation, and multiple signaling pathways of VC induction, including the roles of inflammation and cellular microorganelle genesis.
                Bookmark

                Author and article information

                Contributors
                kjk816@hallym.or.kr
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                10 January 2024
                10 January 2024
                2024
                : 14
                : 939
                Affiliations
                [1 ]Department of Internal Medicine and Kidney Research Institute, Hallym University Sacred Heart Hospital, ( https://ror.org/04ngysf93) Pyungan-dong, Dongan-gu, Anyang, 431-070 Korea
                [2 ]Department of Family Medicine, Hallym University Sacred Heart Hospital, ( https://ror.org/04ngysf93) Anyang, Korea
                [3 ]Department of Statistics and Institute of Statistics, Hallym University, ( https://ror.org/03sbhge02) Chuncheon, Korea
                Article
                51383
                10.1038/s41598-024-51383-2
                10776847
                38195853
                05db9247-c513-4520-bb41-72a0db45725d
                © The Author(s) 2024

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 31 July 2023
                : 4 January 2024
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100003725, National Research Foundation of Korea;
                Award ID: 2020R1A2C110138611
                Award Recipient :
                Categories
                Article
                Custom metadata
                © Springer Nature Limited 2024

                Uncategorized
                cardiovascular biology,nephrology,predictive markers
                Uncategorized
                cardiovascular biology, nephrology, predictive markers

                Comments

                Comment on this article