11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Detection of superoxide and peroxynitrite in model systems and mitochondria by the luminol analogue L-012.

      Free Radical Research
      Animals, Cell-Free System, chemistry, Fluorescent Dyes, Luminescent Measurements, Luminol, analogs & derivatives, Mitochondria, metabolism, Nitrates, analysis, Nitrogen Oxides, Oxidation-Reduction, Rats, Reactive Oxygen Species, Superoxides

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the present study we investigated the specificity and sensitivity of the chemiluminescence (CL) dye and luminol analogue 8-amino-5-chloro-7-phenylpyrido[3,4-d]pyridazine-1,4-(2H,3H) dione (L-012) to detect reactive oxygen species (ROS) such as superoxide, peroxynitrite and hydrogen peroxide in cell free systems as well as in isolated mitochondria. The results obtained by L-012 were compared with other CL substances such as luminol, lucigenin, coelenterazine and the fluorescence dye dihydroethidine. The results indicate that the L-012-derived chemiluminescence induced by superoxide from hypoxanthine/xanthine oxidase (HX/XO) or by 3-morpholino sydnonimine (SIN-1)-derived peroxynitrite largely depends on the incubation time. Irrespective of the experimental conditions, L-012-derived CL in response to HX/XO and SIN-1 was 10-100 fold higher than with other CL dyes tested. In a cell-free system, authentic peroxynitrite yielded a higher L-012-enhanced CL signal than authentic superoxide and the superoxide-induced signal in cell-free as well as isolated mitochondria increased in the presence of equimolar concentrations of nitrogen monoxide (NO). The superoxide signal/background ratio detected by L-012-enhanced CL in isolated mitochondria with blocked respiration was 7 fold higher than that obtained by the superoxide sensitive fluorescence dye dihydroethidine. We conclude that L-012-derived CL may provide a sensitive and reliable tool to detect superoxide and peroxynitrite formation in mitochondrial suspensions.

          Related collections

          Author and article information

          Comments

          Comment on this article