33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The pathogenicity of avian metapneumovirus subtype C wild bird isolates in domestic turkeys

      research-article
      1 , 1 , 1 ,
      Virology Journal
      BioMed Central
      Avian metapneumovirus, Wild bird, Pathogenicity, Turkeys

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Avian metapneumovirus subtype C (aMPV/C) causes severe upper respiratory disease in turkeys. Previous report revealed the presence of aMPV/C in wild birds in the southeast regions of the U.S.

          Methods

          In this study, aMPV/C positive oral swabs from American coots (AC) and Canada geese (CG) were passaged three times in the respiratory tract of specific pathogen free (SPF) turkeys and used as aMPV/C P3 virus isolates in subsequent studies.

          Results

          Wild bird P3 isolates showed similar growth characteristics when compared to virulent aMPV/C in chicken embryo fibroblast ( CEF) cell cultures and their glycoprotein G gene sequence was closely related to the G gene of aMPV/C Colorado reference virus. Three-day-old commercial or SPF turkeys were inoculated oculonasally with wild bird aMPV/C P3 isolates. At 5 and 7 days post-inoculation (DPI), severe clinical signs were observed in both of the AC and CG virus-exposed groups. Viral RNA was detected in tracheal swabs by reverse transcriptase polymerase chain reaction (RT-PCR). In addition, immunohistochemistry showed virus replication in the nasal turbinate and trachea. All virus-exposed turkeys developed positive antibody response by 14 DPI.

          Conclusions

          Our data demonstrate that aMPV/C wild bird isolates induced typical aMPV/C disease in the domestic turkeys.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of the genomic sequence of a human metapneumovirus.

          We recently described the isolation of a novel paramyxovirus from children with respiratory tract disease in The Netherlands. Based on biological properties and limited sequence information the virus was provisionally classified as the first nonavian member of the Metapneumovirus genus and named human metapneumovirus (hMPV). This report describes the analysis of the sequences of all hMPV open reading frames (ORFs) and intergenic sequences as well as partial sequences of the genomic termini. The overall percentage of amino acid sequence identity between APV and hMPV N, P, M, F, M2-1, M2-2, and L ORFs was 56 to 88%. Some nucleotide sequence identity was also found between the noncoding regions of the APV and hMPV genomes. Although no discernible amino acid sequence identity was found between two of the ORFs of hMPV and ORFs of other paramyxoviruses, the amino acid content, hydrophilicity profiles, and location of these ORFs in the viral genome suggest that they represent SH and G proteins. The high percentage of sequence identity between APV and hMPV, their similar genomic organization (3'-N-P-M-F-M2-SH-G-L-5'), and phylogenetic analyses provide evidence for the proposed classification of hMPV as the first mammalian metapneumovirus.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genetic diversity between human metapneumovirus subgroups.

            Complete consensus nucleotide sequences were determined for human metapneumovirus (HMPV) isolates CAN97-83 and CAN98-75, representing the two proposed genotypes or genetic subgroups of HMPV. The overall level of genome nucleotide sequence identity and aggregate proteome amino acid sequence identity between the two HMPV subgroups were 80 and 90%, respectively, similar to the respective values of 81 and 88% between the two antigenic subgroups of human respiratory syncytial virus (HRSV). The diversity between HMPV subgroups was greatest for the SH and G proteins (59 and 37% identity, respectively), which were even more divergent than their HRSV counterparts (72 and 55% cross-subgroup identity, respectively). It is reasonable to anticipate that the two genetic subgroups of HMPV represent antigenic subgroups approximately comparable to those of HRSV.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nucleotide sequences of the F, L and G protein genes of two non-A/non-B avian pneumoviruses (APV) reveal a novel APV subgroup.

              Sequence analysis was performed of all or part of the genes encoding the fusion (F), polymerase (L) and attachment (G) proteins of two French non-A/non-B avian pneumovirus (APV) isolates (Fr/85/1 and Fr/85/2). The two isolates shared at least 99.7% nt and 99.0% aa sequence identity. Comparison with the F genes from subgroup A, subgroup B or Colorado APVs revealed nt and aa identities of 70.0-80. 5% and 77.6-97.2%, respectively, with the L gene sharing 76.1% nt and 85.3% aa identity with that of a subgroup A isolate. The Fr/85/1 and Fr/85/2 G genes comprised 1185 nt, encoding a protein of 389 aa. Common features with subgroup A and subgroup B G proteins included an amino-terminal membrane anchor, a high serine and threonine content, conservation of cysteine residues and a single extracellular region of highly conserved sequence proposed to be the functional domain involved in virus attachment to cellular receptors. However, the Fr/85/1 and Fr/85/2 G sequences shared at best 56.6% nt and 31.2% aa identity with subgroup A and B APVs, whereas these isolates share 38% aa identity. Phylogenetic analysis of the F, G and L genes of pneumoviruses suggested that isolates Fr/85/1 and Fr/85/2 belong to a previously unrecognized APV subgroup, tentatively named D. G-based oligonucleotide primers were defined for the specific molecular identification of subgroup D. These are the first G protein sequences of non-A/non-B APVs to be determined.
                Bookmark

                Author and article information

                Journal
                Virol J
                Virol. J
                Virology Journal
                BioMed Central
                1743-422X
                2013
                30 January 2013
                : 10
                : 38
                Affiliations
                [1 ]Southeast Poultry Research Laboratory, Agricultural Research Service, United States Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA
                Article
                1743-422X-10-38
                10.1186/1743-422X-10-38
                3564841
                23363433
                0645edb4-fc96-4282-83ad-81faf998c7e6
                Copyright ©2013 Cha et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 29 May 2012
                : 25 January 2013
                Categories
                Research

                Microbiology & Virology
                avian metapneumovirus,pathogenicity,turkeys,wild bird
                Microbiology & Virology
                avian metapneumovirus, pathogenicity, turkeys, wild bird

                Comments

                Comment on this article