2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Influence of multiple freeze-thaw cycles on quality characteristics of beef semimembranous muscle: With emphasis on water status and distribution by LF-NMR and MRI

      , , , , , ,
      Meat Science
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Impact of freezing and thawing on the quality of meat: review.

          This comprehensive review describes the effects of freezing and thawing on the physical quality parameters of meat. The formation of ice crystals during freezing damages the ultrastructure and concentrates the solutes in the meat which, in turn, leads to alterations in the biochemical reactions that occur at the cellular level and influence the physical quality parameters of the meat. The quality parameters that were evaluated are moisture loss, protein denaturation, lipid and protein oxidation, colour, pH, shear force and microbial spoilage. Additionally mechanisms employed to mitigate the effects of freezing and thawing were also reviewed. These include the use of novel methods of freezing and thawing, ante and post mortem antifreeze protein inclusion and vitamin E supplementation, brine injection and modified atmospheric packaging.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Water distribution and mobility in meat during the conversion of muscle to meat and ageing and the impacts on fresh meat quality attributes--a review.

            This paper reviews current knowledge on the distribution and mobility of water in muscle (myowater) ante- and post mortem and factors affecting these in relation to fresh meat quality parameters; water-holding capacity (WHC), tenderness and juiciness. NMR transverse relaxometry (T(2)) using bench-top Low-Field Nuclear Magnetic Resonance (LF-NMR) has characterised myowater distribution and mobility as well as structural features in meat which directly affect WHC. The current literature demonstrates that WHC is correlated to the water located outside the myofibrillar network (extra-myofibrillar). This review identifies the critical stages which affect the translocation of water into the extra-myofibrillar space and thus the potential for decreased WHC during proteolysis (the conversion of muscle to meat). This review discusses how the intrinsic properties of the water held within the meat could contribute to juiciness and tenderness. Tenderness has been shown to correlate to T(2), however breed and species differences made it difficult to draw firm conclusions. Further understanding of the inherent water properties of fresh meat and the factors affecting water distribution and mobility using NMR technologies will increase the understanding of WHC and tenderisation of fresh meat. Copyright © 2011 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Physicochemical change and protein oxidation in porcine longissimus dorsi as influenced by different freeze-thaw cycles.

              Effects of different freeze-thaw cycles (0, 1, 3 and 5) on physicochemical change and protein oxidation in porcine longissimus dorsi were investigated. When the number of freeze-thaw cycles increased, the thawing losses, cooking loss and b*-value increased (P<0.05), a*-value decreased (P<0.05). The cutting forces of pork increased after one cycle of freeze-thaw (from 28.3N to 40.4N) (P<0.05), but the further increase of freeze-thaw cycles would lead to decrease of cutting force. The decreases in Ca(2+)- and K(+)-ATPase activity and sulfhydryl group (P<0.05) content with concomitant increases in carbonyl content and thiobarbituric acid-reactive substances (TBARS) value (P<0.05) showed that multiple freeze-thaw could cause the porcine protein and fat oxidation, especially for the pork subjected to five freeze-thaw cycles. Gel electrophoresis patterns of porcine muscle showed that multiple freeze-thaw cycles could cause cross-linking of protein in myofibril. Overall, the freeze-thaw process has a detrimental effect on the quality of pork.
                Bookmark

                Author and article information

                Journal
                Meat Science
                Meat Science
                Elsevier BV
                03091740
                January 2019
                January 2019
                : 147
                : 44-52
                Article
                10.1016/j.meatsci.2018.08.020
                30196200
                0649869b-9c87-4b98-9b41-459c9636a55e
                © 2019

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article