19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tissue Specific Localization of Pectin–Ca 2+ Cross-Linkages and Pectin Methyl-Esterification during Fruit Ripening in Tomato ( Solanum lycopersicum)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fruit ripening is one of the developmental processes accompanying seed development. The tomato is a well-known model for studying fruit ripening and development, and the disassembly of primary cell walls and the middle lamella, such as through pectin de-methylesterified by pectin methylesterase (PE) and depolymerization by polygalacturonase (PG), is generally accepted to be one of the major changes that occur during ripening. Although many reports of the changes in pectin during tomato fruit ripening are focused on the relation to softening of the pericarp or the Blossom-end rot by calcium (Ca 2+) deficiency disorder, the changes in pectin structure and localization in each tissues during tomato fruit ripening is not well known. In this study, to elucidate the tissue-specific role of pectin during fruit development and ripening, we examined gene expression, the enzymatic activities involved in pectin synthesis and depolymerisation in fruit using biochemical and immunohistochemical analyses, and uronic acids and calcium (Ca)-bound pectin were determined by secondary ion-microprobe mass spectrometry. These results show that changes in pectin properties during fruit development and ripening have tissue-specific patterns. In particular, differential control of pectin methyl-esterification occurs in each tissue. Variations in the cell walls of the pericarp are quite different from that of locular tissues. The Ca-binding pectin and hairy pectin in skin cell layers are important for intercellular and tissue–tissue adhesion. Maintenance of the globular form and softening of tomato fruit may be regulated by the arrangement of pectin structures in each tissue.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          MOLECULAR BIOLOGY OF FRUIT MATURATION AND RIPENING.

          The development and maturation of fruits has received considerable scientific scrutiny because of both the uniqueness of such processes to the biology of plants and the importance of fruit as a significant component of the human diet. Molecular and genetic analysis of fruit development, and especially ripening of fleshy fruits, has resulted in significant gains in knowledge over recent years. Great strides have been made in the areas of ethylene biosynthesis and response, cell wall metabolism, and environmental factors, such as light, that impact ripening. Discoveries made in Arabidopsis in terms of general mechanisms for signal transduction, in addition to specific mechanisms of carpel development, have assisted discovery in more traditional models such as tomato. This review attempts to coalesce recent findings in the areas of fruit development and ripening.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants.

            Excessive softening is the main factor limiting fruit shelf life and storage. Transgenic plants modified in the expression of cell wall modifying proteins have been used to investigate the role of particular activities in fruit softening during ripening, and in the manufacture of processed fruit products. Transgenic experiments show that polygalacturonase (PG) activity is largely responsible for pectin depolymerization and solubilization, but that PG-mediated pectin depolymerization requires pectin to be de-methyl-esterified by pectin methylesterase (PME), and that the PG beta-subunit protein plays a role in limiting pectin solubilization. Suppression of PG activity only slightly reduces fruit softening (but extends fruit shelf life), suppression of PME activity does not affect firmness during normal ripening, and suppression of beta-subunit protein accumulation increases softening. All these pectin-modifying proteins affect the integrity of the middle lamella, which controls cell-to-cell adhesion and thus influences fruit texture. Diminished accumulation of either PG or PME activity considerably increases the viscosity of tomato juice or paste, which is correlated with reduced polyuronide depolymerization during processing. In contrast, suppression of beta-galactosidase activity early in ripening significantly reduces fruit softening, suggesting that the removal of pectic galactan side-chains is an important factor in the cell wall changes leading to ripening-related firmness loss. Suppression or overexpression of endo-(1-->4)beta-D-glucanase activity has no detectable effect on fruit softening or the depolymerization of matrix glycans, and neither the substrate nor the function for this enzyme has been determined. The role of xyloglucan endotransglycosylase activity in softening is also obscure, and the activity responsible for xyloglucan depolymerization during ripening, a major contributor to softening, has not yet been identified. However, ripening-related expansin protein abundance is directly correlated with fruit softening and has additional indirect effects on pectin depolymerization, showing that this protein is intimately involved in the softening process. Transgenic work has shown that the cell wall changes leading to fruit softening and textural changes are complex, and involve the coordinated and interdependent activities of a range of cell wall-modifying proteins. It is suggested that the cell wall changes caused early in ripening by the activities of some enzymes, notably beta-galactosidase and ripening-related expansin, may restrict or control the activities of other ripening-related enzymes necessary for the fruit softening process.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols.

              Tomatoes are an excellent source of the carotenoid lycopene, a compound that is thought to be protective against prostate cancer. They also contain small amounts of flavonoids in their peel ( approximately 5-10 mg/kg fresh weight), mainly naringenin chalcone and the flavonol rutin, a quercetin glycoside. Flavonols are very potent antioxidants, and an increasing body of epidemiological data suggests that high flavonoid intake is correlated with a decreased risk for cardiovascular disease. We have upregulated flavonol biosynthesis in the tomato in order to generate fruit with increased antioxidant capacity and a wider range of potential health benefit properties. This involved transformation of tomato with the Petunia chi-a gene encoding chalcone isomerase. Resulting transgenic tomato lines produced an increase of up to 78 fold in fruit peel flavonols, mainly due to an accumulation of rutin. No gross phenotypical differences were observed between high-flavonol transgenic and control lines. The phenotype segregated with the transgene and demonstrated a stable inheritance pattern over four subsequent generations tested thus far. Whole-fruit flavonol levels in the best of these lines are similar to those found in onions, a crop with naturally high levels of flavonol compounds. Processing of high-flavonol tomatoes demonstrated that 65% of flavonols present in the fresh fruit were retained in the processed paste, supporting their potential as raw materials for tomato-based functional food products.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                13 November 2013
                : 8
                : 11
                : e78949
                Affiliations
                [1 ]University of Tsukuba, Faculty of Life and Environmental Sciences, Tsukuba, Ibaraki, Japan
                [2 ]Hokkaido University, Creative Research Institution (CRIS), Sapporo, Hokkaido, Japan
                [3 ]Hokkaido University, Natural History Sciences, Sapporo, Hokkaido, Japan
                Institute for Plant Protection (IPP), CNR, Italy
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: HI. Performed the experiments: HH. Analyzed the data: HH AT JF SS HI. Contributed reagents/materials/analysis tools: NS HY. Wrote the paper: HH HI.

                Article
                PONE-D-13-23131
                10.1371/journal.pone.0078949
                3827314
                24236073
                06cc3e16-1cd3-40a3-970a-60badf8eee6b
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 4 June 2013
                : 17 September 2013
                Page count
                Pages: 10
                Funding
                This work was supported by a Grant-in-Aid for Scientific Research on Priority Areas (18075004) and a Grant-in-Aid for Scientific Research on Innovative Areas (24114006). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article