32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Bluetongue in Eurasian Lynx

      letter

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To the Editor: Bluetongue is an infectious disease of ruminants; it is caused by bluetongue virus (BTV), has 24 known serotypes, and is transmitted by several species of Culicoides biting midges. The disease mainly affects sheep and occurs when susceptible animals are introduced to areas where BTV circulates or when BTV is introduced to naive ruminant populations. The natural host range is strictly limited to ruminants, although seroconversion without disease has been reported in carnivores ( 1 ). We report BTV infection, disease, and death in 2 Eurasian lynx (Lynx lynx) and the isolation of BTV serotype 8 (BTV-8) from this carnivorous species. The 2 Eurasian lynx, held in the same cage in a zoo in Belgium, became lethargic in September 2007; animal 1 died after 2 days, and animal 2 died in February 2008. Both had been fed ruminant fetuses and stillborns from surrounding farms in an area where many bluetongue cases had been confirmed ( 2 ). Necropsy findings for animal 1 were anemia, subcutaneous hematomas, petechial hemorrhages, and lung congestion with edema. Necropsy findings for animal 2 were emaciation, anemia, enlarged and gelatinous lymph nodes, petechial hemorrhages, and pneumonia. For each animal, microscopic examination showed edematous vascular walls; enlarged endothelial cells; and evidence of acute to subacute vasculitis in muscle, myocardium, peritoneum, and lung. Tissue samples (spleen, lung, intestine) were analyzed by using 2 real-time reverse transcriptase–quantitative PCR techniques targeting BTV segment 5 and host β-actin mRNA as a control. BTV RNA was found in all samples from animal 1; cycle threshold values ( 3 ) ranged from 28.6 to 36.2. Tissues from animal 2 were negative for BTV RNA. Although the internal control was originally designed to detect β-actin mRNA of bovine or ovine species, clear positive signals were noted in all lynx samples, which indicated that this was a reliable control procedure. Infectious virus was subsequently isolated from the lung sample of animal 1 after inoculation of embryonated chicken eggs and amplification in baby hamster kidney–21 cell cultures ( 4 ). The specificity of the cytopathic effect, observed 48 hours after passage on baby hamster kidney–21 cells, was confirmed by real-time reverse transcriptase–quantitative PCR. Virus neutralization using specific reference serum ( 5 ) proved that the isolated virus was BTV-8. Anti-BTV antibodies were detected in lung tissue fluid from animal 2 (ID Screen Bluetongue Competition assay, ID VET, Monpellier, France) ( 6 ). We describe a natural, wild-type infection of a carnivorous species. Although deaths have been documented in dogs accidentally infected with a BTV-contaminated vaccine ( 7 ), the 2 lynx in this report were neither vaccinated nor medically treated by injection. BTV-8 was first introduced to northern Europe in 2006 and has subsequently spread rapidly to many countries on that continent. During 2007, a total of 6,870 bluetongue cases were reported in Belgium ( 2 ); animal 1 died in September 2007, which corresponded to the peak of bluetongue outbreaks in that region. No deaths were reported during that period among other animals, including ruminants, held in the same zoo as the 2 lynx reported here. The time lapse between initial clinical signs and death could explain the failure to detect BTV-8 RNA in animal 2. Although speculative, the suspicion of bluetongue in this animal is based on the presence of anti–BTV-8 antibodies, vasculitis, and pneumonia, which have been found in dogs accidentally infected with BTV ( 7 ). This report raises questions about the current knowledge of the epidemiology of bluetongue. Bluetongue in lynx indicates that the list of known susceptible species must be widened, at least for serotype 8. Although infection of a susceptible host by an insect vector is the only proven natural transmission mechanism for wild-type BTV, transplacental transmission of BTV-8, resulting in the birth of seropositive ( 8 ) or virus-positive calves ( 9 ), has recently been described in cattle. Although infection by an insect vector cannot be excluded, transmission by the oral route must be strongly suspected because the lynx described in this report had been fed ruminant fetuses and stillborn animals from surrounding farms. This possibility is supported by a previous suspicion that seroconversion to BTV in carnivores was a result of oral infection ( 1 ). The possibility of oral transmission is also supported by evidence of lateral transmission of BTV infection to cattle having occurred, in the absence of insect vectors, as a result of direct contact with newborn viremic calves born to infected dams that had been imported to Northern Ireland from a bluetongue-infected region of continental Europe (S. Kennedy, unpub. data). The role of wildlife, especially carnivores, in the epidemiology of bluetongue deserves further study to elucidate their role as either dead-end hosts or new sources of infection for livestock and to help determine the risks for wildlife populations. Our findings clearly indicate that a novel transmission pathway enables the virus to cross species. Consequently, transmission to other species, including domestic animals, can no longer be excluded. Moreover, oral transmission is likely to have considerable implications for disease control, including vaccination, because BTV-8 is a fast-emerging virus with major financial consequences.

          Related collections

          Most cited references5

          • Record: found
          • Abstract: found
          • Article: not found

          Bluetongue virus detection by two real-time RT-qPCRs targeting two different genomic segments.

          The detection of the bluetongue virus (BTV) by conventional methods is especially difficult and labour-intensive. Molecular diagnosis is also complex because of the high genetic diversity between and within the 24 serotypes of BTV. In the present study, two laboratories joined forces to develop and validate two new RT-qPCRs detecting and amplifying BTV segments 1 and 5. The 2 assays detect strains from all 24 serotypes. They both have a detection limit of 0.01 ECE50 and all 114 samples from BTV-free goats, sheep and cattle were negative. The two assays resulted in similar C(t) values when testing biological samples collected in sheep infected experimentally with a field strain of BTV from the Mediterranean basin. On average, the C(t) values obtained with the 2 methods applied to the 24 serotypes were not significantly different from each other, but some moderate to high differences were seen with a few strains. Therefore these two methods are complementary and could be used in parallel to confirm the diagnosis of a possible new introduction of BTV. An RT-qPCR amplifying a fragment of the beta-actin mRNA was also developed and validated as internal control for the bluetongue specific assays. The three assays described allow a reliable and rapid detection of BTV.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evaluation of antibody-ELISA and real-time RT-PCR for the diagnosis and profiling of bluetongue virus serotype 8 during the epidemic in Belgium in 2006.

            In 2006 bluetongue (BT) emerged for the first time in North-Western Europe. Reliable diagnostic tools are essential in controlling BT but data on the diagnostic sensitivity (Se) and specificity (Sp) are often missing. This paper aims to describe and analyse the results obtained with the diagnostics used in Belgium during the 2006 BT crisis. The diagnosis was based on a combination of antibody detection (competitive ELISA, cELISA) and viral RNA detection by real-time RT-PCR (RT-qPCR). The performance of the cELISA as a diagnostic tool was assessed on field results obtained during the epidemic and previous surveillance campaigns. As the infectious status of the animals is unknown during an epidemic, a Bayesian analysis was performed. Both assays were found to be equally specific (RT-qPCR: 98.5%; cELISA: 98.2%) while the diagnostic sensitivity of the RT-qPCR (99.5%) was superior to that of the cELISA (87.8%). The assumption of RT-qPCR as standard of comparison during the bluetongue virus (BTV) epidemic proved valid based on the results of the Bayesian analysis. A ROC analysis of the cELISA, using RT-qPCR as standard of comparison, showed that the cut-off point with the highest accuracy occurred at a percentage negativity of 66, which is markedly higher than the cut-off proposed by the manufacturer. The analysis of the results was further extended to serological and molecular profiling and the possible use of profiling as a rapid epidemiological marker of the BTV in-field situation was assessed. A comparison of the serological profiles obtained before, during and at the end of the Belgian epidemic clearly showed the existence of an intermediate zone which appears soon after BTV (re)enters the population. The appearance or disappearance of this intermediate zone is correlated with virus circulation and provides valuable information, which would be entirely overlooked if only positive and negative results were considered.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Evidence for transplacental transmission of the current wild-type strain of bluetongue virus serotype 8 in cattle.

                Bookmark

                Author and article information

                Journal
                Emerg Infect Dis
                EID
                Emerging Infectious Diseases
                Centers for Disease Control and Prevention
                1080-6040
                1080-6059
                September 2008
                : 14
                : 9
                : 1496-1498
                Affiliations
                [1]Author affiliations: Royal Belgian Institute of Natural Sciences, Brussels, Belgium (T.P. Jauniaux)
                [2]University of Liege, Liege, Belgium (T.P. Jauniaux, D.E. Cassart, F.L. Coignoul)
                [3]Veterinary and Agrochemical Research Centre, Brussels (K.E. De Clercq, F.E. Vandenbussche, E.L. Vandemeulebroucke, T.M. Vanbinst, B.I. Verheyden, N.E. Goris)
                [4]Agri-Food and Biosciences Institute, Belfast, Northern Ireland, UK (S. Kennedy)
                Author notes
                Address for correspondence: Thierry P. Jauniaux, Department of Pathology, Veterinary College, University of Liege, Sart Tilman B43, 4000 Liege, Belgium; email: t.jauniaux@ 123456ulg.ac.be
                Article
                08-0434
                10.3201/eid1409.080434
                2603091
                18760034
                07350a09-a178-4304-980f-99c9f2630dbf
                History
                Categories
                Letters to the Editor

                Infectious disease & Microbiology
                letter,lynx,bluetongue,serotype 8,btv,pathology,carnivore
                Infectious disease & Microbiology
                letter, lynx, bluetongue, serotype 8, btv, pathology, carnivore

                Comments

                Comment on this article