5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Determining the gait of Miocene, Pliocene, and Pleistocene horses from fossilized trackways

      Fossil Record
      Copernicus GmbH

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract. Much work has been done on the study of vertebrate gaits over the past several decades and efforts undertaken to apply this to fossil tracks, especially dinosaurs and mammals such as cats, dogs, camels, and horses. This work seeks to expand upon such studies and in particular to study footprints laid down in sand by modern horses and apply such studies to determine the gaits of fossil horse trackways. It thus builds upon the work of Renders (1984a, b) and Kienapfel et al. (2014) and suggests additional measurements that can be taken on horse footprints. In this study the footprints left in the sand by 15 horses of various breeds with various gaits were videotaped, photographed, described, and measured in order to determine characteristics useful in distinguishing gaits. These results were then applied to two new sets of fossil footprints, those of the middle Miocene merychippine horse Scaphohippus intermontanus that I personally examined and measured and those from the late Pleistocene horse Equus conversidens, previously illustrated and described in the literature (McNeil et al., 2007). The latter horse exhibits a fast gallop of around 9.4 m/s, but it is the former whose footprints are quite unique. The quantitative and visual features of these prints are suggestive of a medium-fast gait involving apparent “understepping” of diagonal couplets and hind feet that overlap the centerline. The gait that most closely matches the footprints of Scaphohippus is the “artificial” gait of a slow rack or tölt, or pace, around 1.9 m/s, though an atypical trot of a horse with major conformation issues or which is weaving (swaying) from side to side is a less likely possibility. This intimates, along with the earlier study of Renders (1984a, b), who found the artificial gait of the running walk displayed by Pliocene hipparionine horses, that ancient horses possessed a much greater variety of gaits than modern horses and that over time they lost these abilities with the exception of certain gaited breeds.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: not found
          • Article: not found

          Estimates of speeds of dinosaurs

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Symmetrical gaits of horses.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              Mutations in DMRT3 affect locomotion in horses and spinal circuit function in mice.

              Locomotion in mammals relies on a central pattern-generating circuitry of spinal interneurons established during development that coordinates limb movement. These networks produce left-right alternation of limbs as well as coordinated activation of flexor and extensor muscles. Here we show that a premature stop codon in the DMRT3 gene has a major effect on the pattern of locomotion in horses. The mutation is permissive for the ability to perform alternate gaits and has a favourable effect on harness racing performance. Examination of wild-type and Dmrt3-null mice demonstrates that Dmrt3 is expressed in the dI6 subdivision of spinal cord neurons, takes part in neuronal specification within this subdivision, and is critical for the normal development of a coordinated locomotor network controlling limb movements. Our discovery positions Dmrt3 in a pivotal role for configuring the spinal circuits controlling stride in vertebrates. The DMRT3 mutation has had a major effect on the diversification of the domestic horse, as the altered gait characteristics of a number of breeds apparently require this mutation.
                Bookmark

                Author and article information

                Journal
                Fossil Record
                Foss. Rec.
                Copernicus GmbH
                2193-0074
                2021
                June 10 2021
                : 24
                : 1
                : 151-169
                Article
                10.5194/fr-24-151-2021
                073b1fd9-7212-4ade-ba79-8a259839565c
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article