Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effect of Nutrient Solution pH on the Growth, Yield and Quality of Taraxacum officinale and Reichardia picroides in a Floating Hydroponic System

      , , , , ,
      Agronomy
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Given the important medicinal and nutritional value of wild edible greens, the last few years there is an increasing interest for their domestication and commercial exploitation. However, information concerning their adaptation to environmental conditions and their response to modern agricultural systems are scarce. In the present study, the effect of nutrient solution pH (4.0, 5.5 and 7.0) on the growth, chemical composition and inorganic nutrition of Taraxacum officinale and Reichardia picroides plants grown indoors in a floating hydroponic system was evaluated. Both species performed better at pH 5.5 and were slightly affected by pH 7.0, whereas pH 4.0 was not prohibitive for growth for both species, although R. picroides was less tolerant than T. officinale at low pH. Moreover, pH 4.0 did not severely affect nutrients uptake and transport within the plant tissues, suggesting that R. picroides susceptibility to low pH should not be attributed to nutrients imbalance. Nevertheless, low pH positively enhanced the content in total soluble solids, total phenolics, chlorophylls (a, b and total) and carotenoids, and decreased nitrates in both species. In conclusion, the studied species could be successfully grown in soilless systems with nutrient solutions of varied pH. Moreover, low pH levels (pH = 4.0) seemed to be beneficial to nutritional and dietary value in both species highlighting the potential of commercial cultivation under adverse conditions, especially in sustainable farming systems.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          Elicitor signal transduction leading to production of plant secondary metabolites.

          Plant secondary metabolites are unique sources for pharmaceuticals, food additives, flavors, and other industrial materials. Accumulation of such metabolites often occurs in plants subjected to stresses including various elicitors or signal molecules. Understanding signal transduction paths underlying elicitor-induced production of secondary metabolites is important for optimizing their commercial production. This paper summarizes progress made on several aspects of elicitor signal transduction leading to production of plant secondary metabolites, including: elicitor signal perception by various receptors of plants; avirulence determinants and corresponding plant R proteins; heterotrimeric and small GTP binding proteins; ion fluxes, especially Ca2+ influx, and Ca2+ signaling; medium alkalinization and cytoplasmic acidification; oxidative burst and reactive oxygen species; inositol trisphosphates and cyclic nucleotides (cAMP and cGMP); salicylic acid and nitric oxide; jasmonate, ethylene, and abscisic acid signaling; oxylipin signals such as allene oxide synthase-dependent jasmonate and hydroperoxide lyase-dependent C12 and C6 volatiles; as well as other lipid messengers such as lysophosphatidylcholine, phosphatidic acid, and diacylglycerol. All these signal components are employed directly or indirectly by elicitors for induction of plant secondary metabolite accumulation. Cross-talk between different signaling pathways is very common in plant defense response, thus the cross-talk amongst these signaling pathways, such as elicitor and jasmonate, jasmonate and ethylene, and each of these with reactive oxygen species, is discussed separately. This review also highlights the integration of multiple signaling pathways into or by transcription factors, as well as the linkage of the above signal components in elicitor signaling network through protein phosphorylation and dephosphorylation. Some perspectives on elicitor signal transduction and plant secondary metabolism at the transcriptome and metabolome levels are also presented.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid1

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                ABSGGL
                Agronomy
                Agronomy
                MDPI AG
                2073-4395
                June 2021
                May 30 2021
                : 11
                : 6
                : 1118
                Article
                10.3390/agronomy11061118
                07593557-dd08-4cfc-972c-246a82dca29f
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article