7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exercise-Induced Hypoxemia in Endurance Athletes: Consequences for Altitude Exposure

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Exercise-induced hypoxemia (EIH) is well-described in endurance-trained athletes during both maximal and submaximal exercise intensities. Despite the drop in oxygen (O 2) saturation and provided that training volumes are similar, athletes who experience EIH nevertheless produce the same endurance performance in normoxia as athletes without EIH. This lack of a difference prompted trainers to consider that the phenomenon was not relevant to performance but also suggested that a specific adaptation to exercise is present in EIH athletes. Even though the causes of EIH have been extensively studied, its consequences have not been fully characterized. With the development of endurance outdoor activities and altitude/hypoxia training, athletes often train and/or compete in this stressful environment with a decrease in the partial pressure of inspired O 2 (due to the drop in barometric pressure). Thus, one can reasonably hypothesize that EIH athletes can specifically adapt to hypoxemic episodes during exercise at altitude. Although our knowledge of the interactions between EIH and acute exposure to hypoxia has improved over the last 10 years, many questions have yet to be addressed. Firstly, endurance performance during acute exposure to altitude appears to be more impaired in EIH vs. non-EIH athletes but the corresponding physiological mechanisms are not fully understood. Secondly, we lack information on the consequences of EIH during chronic exposure to altitude. Here, we (i) review research on the consequences of EIH under acute hypoxic conditions, (ii) highlight unresolved questions about EIH and chronic hypoxic exposure, and (iii) suggest perspectives for improving endurance training.

          Related collections

          Most cited references79

          • Record: found
          • Abstract: found
          • Article: not found

          Combining hypoxic methods for peak performance.

          New methods and devices for pursuing performance enhancement through altitude training were developed in Scandinavia and the USA in the early 1990s. At present, several forms of hypoxic training and/or altitude exposure exist: traditional 'live high-train high' (LHTH), contemporary 'live high-train low' (LHTL), intermittent hypoxic exposure during rest (IHE) and intermittent hypoxic exposure during continuous session (IHT). Although substantial differences exist between these methods of hypoxic training and/or exposure, all have the same goal: to induce an improvement in athletic performance at sea level. They are also used for preparation for competition at altitude and/or for the acclimatization of mountaineers. The underlying mechanisms behind the effects of hypoxic training are widely debated. Although the popular view is that altitude training may lead to an increase in haematological capacity, this may not be the main, or the only, factor involved in the improvement of performance. Other central (such as ventilatory, haemodynamic or neural adaptation) or peripheral (such as muscle buffering capacity or economy) factors play an important role. LHTL was shown to be an efficient method. The optimal altitude for living high has been defined as being 2200-2500 m to provide an optimal erythropoietic effect and up to 3100 m for non-haematological parameters. The optimal duration at altitude appears to be 4 weeks for inducing accelerated erythropoiesis whereas <3 weeks (i.e. 18 days) are long enough for beneficial changes in economy, muscle buffering capacity, the hypoxic ventilatory response or Na(+)/K(+)-ATPase activity. One critical point is the daily dose of altitude. A natural altitude of 2500 m for 20-22 h/day (in fact, travelling down to the valley only for training) appears sufficient to increase erythropoiesis and improve sea-level performance. 'Longer is better' as regards haematological changes since additional benefits have been shown as hypoxic exposure increases beyond 16 h/day. The minimum daily dose for stimulating erythropoiesis seems to be 12 h/day. For non-haematological changes, the implementation of a much shorter duration of exposure seems possible. Athletes could take advantage of IHT, which seems more beneficial than IHE in performance enhancement. The intensity of hypoxic exercise might play a role on adaptations at the molecular level in skeletal muscle tissue. There is clear evidence that intense exercise at high altitude stimulates to a greater extent muscle adaptations for both aerobic and anaerobic exercises and limits the decrease in power. So although IHT induces no increase in VO(2max) due to the low 'altitude dose', improvement in athletic performance is likely to happen with high-intensity exercise (i.e. above the ventilatory threshold) due to an increase in mitochondrial efficiency and pH/lactate regulation. We propose a new combination of hypoxic method (which we suggest naming Living High-Training Low and High, interspersed; LHTLHi) combining LHTL (five nights at 3000 m and two nights at sea level) with training at sea level except for a few (2.3 per week) IHT sessions of supra-threshold training. This review also provides a rationale on how to combine the different hypoxic methods and suggests advances in both their implementation and their periodization during the yearly training programme of athletes competing in endurance, glycolytic or intermittent sports.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Exercise-induced arterial hypoxemia.

            Exercise-induced arterial hypoxemia (EIAH) at or near sea level is now recognized to occur in a significant number of fit, healthy subjects of both genders and of varying ages. Our review aims to define EIAH and to critically analyze what we currently understand, and do not understand, about its underlying mechanisms and its consequences to exercise performance. Based on the effects on maximal O(2) uptake of preventing EIAH, we suggest that mild EIAH be defined as an arterial O(2) saturation of 93-95% (or 3-4% 25-30 Torr) and inadequate compensatory hyperventilation (arterial PCO(2) >35 Torr) commonly contribute to EIAH, as do acid- and temperature-induced shifts in O(2) dissociation at any given arterial PO(2). In turn, expiratory flow limitation presents a significant mechanical constraint to exercise hyperpnea, whereas ventilation-perfusion ratio maldistribution and diffusion limitation contribute about equally to the excessive A-a DO(2). Exactly how diffusion limitation is incurred or how ventilation-perfusion ratio becomes maldistributed with heavy exercise remains unknown and controversial. Hypotheses linked to extravascular lung water accumulation or inflammatory changes in the "silent" zone of the lung's peripheral airways are in the early stages of exploration. Indirect evidence suggests that an inadequate hyperventilatory response is attributable to feedback inhibition triggered by mechanical constraints and/or reduced sensitivity to existing stimuli; but these mechanisms cannot be verified without a sensitive measure of central neural respiratory motor output. Finally, EIAH has detrimental effects on maximal O(2) uptake, but we have not yet determined the cause or even precisely identified which organ system, involved directly or indirectly with O(2) transport to muscle, is responsible for this limitation.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              “Living high-training low”: effect of moderate-altitude acclimatization with low-altitude training on performance

                Bookmark

                Author and article information

                Contributors
                Journal
                Front Sports Act Living
                Front Sports Act Living
                Front. Sports Act. Living
                Frontiers in Sports and Active Living
                Frontiers Media S.A.
                2624-9367
                26 April 2021
                2021
                : 3
                : 663674
                Affiliations
                [1] 1Images Espace Dev, Université de Perpignan Via Domitia , Perpignan, France
                [2] 2Laboratoire IMS, Université de Bordeaux , Bordeaux, France
                Author notes

                Edited by: Franck Brocherie, Institut national du sport, de l'expertise et de la performance (INSEP), France

                Reviewed by: Martin Burtscher, University of Innsbruck, Austria; Sarah J. Willis, University of Lausanne, Switzerland

                *Correspondence: Fabienne Durand fdurand@ 123456univ-perp.fr

                This article was submitted to Elite Sports and Performance Enhancement, a section of the journal Frontiers in Sports and Active Living

                Article
                10.3389/fspor.2021.663674
                8107360
                33981992
                0766c6bb-8887-4491-a7fc-f1562beb6801
                Copyright © 2021 Durand and Raberin.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 03 February 2021
                : 25 March 2021
                Page count
                Figures: 1, Tables: 1, Equations: 0, References: 79, Pages: 8, Words: 6436
                Categories
                Sports and Active Living
                Mini Review

                endurance,performance,exercise induced hypoxemia,altitude,o2 desaturation,altitude/hypoxia training,endurance performance

                Comments

                Comment on this article