Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      BCR-dependent lineage plasticity in mature B cells

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          B2 cells engage in classical antibody responses, whereas B1 cells are considered carriers of innate immunity, biased toward recognizing epitopes present on the surfaces of common pathogens and self antigens. To explore the role of B cell antigen receptor (BCR) specificity in driving B1 cell differentiation, we developed a transgenic system allowing us to change BCR specificity in B cells in an inducible and programmed manner. Mature B2 cells differentiated into bona fide B1 cells upon acquisition of a B1 cell–typical self-reactive BCR through a phase of proliferative expansion. Thus, B2 cells have B1 cell differentiation potential in addition to their classical capacity to differentiate into memory and plasma cells, and B1 differentiation can be instructed by BCR-mediated self-reactivity, in the absence of B1-lineage precommitment.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Clonal selection and learning in the antibody system.

          K Rajewsky (1996)
          Each antibody-producing B cell makes antibodies of unique specificity, reflecting a series of ordered gene rearrangements which must be successfully performed if the cell is to survive. A second selection process occurs during immune responses in which a new antibody repertoire is generated through somatic hypermutation. Here only mutants binding antigen with high affinity survive to become memory cells. Cells expressing autoreactive receptors are counter-selected at both stages. This stringent positive and negative selection allows the generation and diversification of cells while rigorously controlling their specificity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            B cell development pathways.

            B cell development is a highly regulated process whereby functional peripheral subsets are produced from hematopoietic stem cells, in the fetal liver before birth and in the bone marrow afterward. Here we review progress in understanding some aspects of this process in the mouse bone marrow, focusing on delineation of the earliest stages of commitment, on pre-B cell receptor selection, and B cell tolerance during the immature-to-mature B cell transition. Then we note some of the distinctions in hematopoiesis and pre-B selection between fetal liver and adult bone marrow, drawing a connection from fetal development to B-1/CD5(+) B cells. Finally, focusing on CD5(+) cells, we consider the forces that influence the generation and maintenance of this distinctive peripheral B cell population, enriched for natural autoreactive specificities that are encoded by particular germline V(H)-V(L) combinations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rapid generation of inducible mouse mutants.

              We have generated an optimized inducible recombination system for conditional gene targeting based on a Cre recombinase-steroid receptor fusion. This configuration allows efficient Cre-mediated recombination in most organs of the mouse upon induction, without detectable background activity. An ES cell line, was established that carries the inducible recombinase and a loxP-flanked lacZ reporter gene. Out of this line, completely ES cell-derived mice were efficiently produced through tetraploid blastocyst complementation, without the requirement of mouse breeding. Our findings provide a new concept allowing the generation of inducible mouse mutants within 6 months, as compared to 14 months using the current protocol.
                Bookmark

                Author and article information

                Journal
                Science
                Science
                American Association for the Advancement of Science (AAAS)
                0036-8075
                1095-9203
                February 14 2019
                February 15 2019
                February 14 2019
                February 15 2019
                : 363
                : 6428
                : 748-753
                Article
                10.1126/science.aau8475
                30765568
                07c202d4-d229-4be1-9a6d-7aa400d42d24
                © 2019

                http://www.sciencemag.org/about/science-licenses-journal-article-reuse

                History

                Comments

                Comment on this article