25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nitrogen-containing bisphosphonates inhibit RANKL- and M-CSF-induced osteoclast formation through the inhibition of ERK1/2 and Akt activation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Bisphosphonates are an important class of antiresorptive drugs used in the treatment of metabolic bone diseases. Recent studies have shown that nitrogen-containing bisphosphonates induced apoptosis in rabbit osteoclasts and prevented prenylated small GTPase. However, whether bisphosphonates inhibit osteoclast formation has not been determined. In the present study, we investigated the inhibitory effect of minodronate and alendronate on the osteoclast formation and clarified the mechanism involved in a mouse macrophage-like cell lines C7 and RAW264.7.

          Results

          It was found that minodronate and alendronate inhibited the osteoclast formation of C7 cells induced by receptor activator of NF-κB ligand and macrophage colony stimulating factor, which are inhibited by the suppression of geranylgeranyl pyrophosphate (GGPP) biosynthesis. It was also found that minodronate and alendronate inhibited the osteoclast formation of RAW264.7 cells induced by receptor activator of NF-κB ligand. Furthermore, minodronate and alendornate decreased phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt; similarly, U0126, a mitogen protein kinase kinase 1/2 (MEK1/2) inhibitor, and LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor, inhibited osteoclast formation.

          Conclusions

          This indicates that minodronate and alendronate inhibit GGPP biosynthesis in the mevalonate pathway and then signal transduction in the MEK/ERK and PI3K/Akt pathways, thereby inhibiting osteoclast formation. These results suggest a novel effect of bisphosphonates that could be effective in the treatment of bone metabolic diseases, such as osteoporosis.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families.

          Osteoblasts/stromal cells are essentially involved in osteoclast differentiation and function through cell-to-cell contact (Fig. 8). Although many attempts have been made to elucidate the mechanism of the so-called "microenvironment provided by osteoblasts/stromal cells," (5-8) it has remained an open question until OPG and its binding molecule were cloned. The serial discovery of the new members of the TNF receptor-ligand family members has confirmed the idea that osteoclast differentiation and function are regulated by osteoblasts/stromal cells. RANKL, which has also been called ODF, TRANCE, or OPGL, is a member of the TNF ligand family. Expression of RANKL mRNA in osteoblasts/stromal cells is up-regulated by osteotropic factors such as 1 alpha, 25(OH)2D3, PTH, and IL-11. Osteoclast precursors express RANK, a TNF receptor family member, recognize RANKL through cell-to-cell interaction with osteoblasts/stromal cells, and differentiate into pOCs in the presence of M-CSF. RANKL is also involved in the survival and fusion of pOCs and activation of mature osteoclasts. OPG, which has also been called OCIF or TR1, is a soluble receptor for RANKL and acts as a decoy receptor in the RANK-RANKL signaling system (Fig. 8). In conclusion, osteoblasts/stromal cells are involved in all of the processes of osteoclast development, such as differentiation, survival, fusion, and activation of osteoclasts (Fig. 8). Osteoblasts/stromal cells can now be replaced with RANKL and M-CSF in dealing with the whole life of osteoclasts. RANKL, RANK, and OPG are three key molecules that regulate osteoclast recruitment and function. Further studies on these key molecules will elucidate the molecular mechanism of the regulation of osteoclastic bone resorption. This line of studies will establish new ways to treat several metabolic bone diseases caused by abnormal osteoclast recruitment and functions such as osteopetrosis, osteoporosis, metastatic bone disease, Paget's disease, rheumatoid arthritis, and periodontal bone disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reaching a genetic and molecular understanding of skeletal development.

            In the last ten years, we have made considerable progress in our genetic and molecular understanding of all aspects of skeletal development, chondrogenesis, joint formation, and osteogenesis. This review addresses the role of the principal growth factors and transcription factors affecting these different processes and presents, in several cases, the genetic cascade leading to cell differentiation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene.

              Mice homozygous for the recessive mutation osteopetrosis (op) on chromosome 3 have a restricted capacity for bone remodelling, and are severely deficient in mature macrophages and osteoclasts. Both cell populations originate from a common haemopoietic progenitor. As op/op mice are not cured by transplants of normal bone marrow cells, the defects in op/op mice may be associated with an abnormal haematopoietic microenvironment rather than with an intrinsic defect in haematopoietic progenitors. To investigate the molecular and biochemical basis of the defects caused by the op mutation, we established primary fibroblast cell lines from op/op mice and tested the ability of these cell lines to support the proliferation of macrophage progenitors. We show that op/op fibroblasts are defective in production of functional macrophage colony-stimulating factor (M-CSF), although its messenger RNA (Csfm mRNA) is present at normal levels. This defect in M-CSF production and the recent mapping of the Csfm structural gene near op on chromosome 3 suggest that op is a mutation within the Csfm gene itself. We have sequenced Csfm complementary DNA prepared from op/op fibroblasts and found a single base pair insertion in the coding region of the Csfm gene that generates a stop codon 21 base pairs downstream. Thus, the op mutation is within the Csfm coding region and we conclude that the pathological changes in this mutant result from the absence of M-CSF.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Biomed Sci
                J. Biomed. Sci
                Journal of Biomedical Science
                BioMed Central
                1021-7770
                1423-0127
                2014
                3 February 2014
                : 21
                : 1
                : 10
                Affiliations
                [1 ]Division of Pharmacotherapy, Kinki University School of Pharmacy, Kowakae, Higashi-Osaka 577-8502, Japan
                [2 ]Department of Pathology, Kinki University School of Medicine, Osakasayama, Osaka, Japan
                [3 ]Department of Surgery, Kinki University School of Medicine, Osakasayama, Osaka, Japan
                [4 ]Department of Pharmacy, Izumi Municipal Hospital, Izumi, Osaka, Japan
                [5 ]Department of Pharmacy, Japanese Red Cross Society Wakayama Medical Center, Wakayama, Japan
                Article
                1423-0127-21-10
                10.1186/1423-0127-21-10
                3996180
                24490900
                083cee0d-834b-4033-ab37-80136ef8ca3a
                Copyright © 2014 Tsubaki et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 18 September 2013
                : 20 January 2014
                Categories
                Research

                Molecular medicine
                nitrogen-containing bisphosphonate,geranylgeranyl pyrophosphate,mek1/2,pi3k
                Molecular medicine
                nitrogen-containing bisphosphonate, geranylgeranyl pyrophosphate, mek1/2, pi3k

                Comments

                Comment on this article