55
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Generation of human vascular smooth muscle subtypes provides insight into embryological origin-dependent disease susceptibility

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Heterogeneity of embryological origins is a hallmark of vascular smooth muscle cells (SMCs), which may influence vascular disease development. Differentiation of human pluripotent stem cells (hPSCs) into developmental origin-specific SMC subtypes remains elusive. In this study, we have established a chemically defined protocol where hPSCs were initially induced to form neuroectoderm, lateral plate mesoderm or paraxial mesoderm. These intermediate populations were further differentiated towards SMCs (>80% MYH11 + and ACTA2 +) which displayed contractile ability in response to vasoconstrictors and invested perivascular regions in vivo. Derived SMC subtypes recapitulated the unique proliferative and secretory responses to cytokines previously documented in studies using aortic SMCs of distinct origins. Importantly, this system predicted increased extracellular matrix degradation by SMCs derived from lateral plate mesoderm, which was confirmed using rat aortic SMCs from corresponding origins. Collectively, this work will have broad applications in modeling origin-dependent disease susceptibility and in bio-engineered vascular grafts for regenerative medicine.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular regulation of vessel maturation.

          The maturation of nascent vasculature, formed by vasculogenesis or angiogenesis, requires recruitment of mural cells, generation of an extracellular matrix and specialization of the vessel wall for structural support and regulation of vessel function. In addition, the vascular network must be organized so that all the parenchymal cells receive adequate nutrients. All of these processes are orchestrated by physical forces as well as by a constellation of ligands and receptors whose spatio-temporal patterns of expression and concentration are tightly regulated. Inappropriate levels of these physical forces or molecules produce an abnormal vasculature--a hallmark of various pathologies. Normalization of the abnormal vasculature can facilitate drug delivery to tumors and formation of a mature vasculature can help realize the promise of therapeutic angiogenesis and tissue engineering.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Matrix Metalloproteinases in Vascular Remodeling and Atherogenesis: The Good, the Bad, and the Ugly

            Vascular remodeling, defined as any enduring change in the size and/or composition of an adult blood vessel, allows adaptation and repair. On the other hand, inappropriate remodeling, including its absence, underlies the pathogenesis of major cardiovascular diseases, such as atherosclerosis and restenosis. Since degradation of the extracellular matrix scaffold enables reshaping of tissue, participation of specialized enzymes called matrix metalloproteinases (MMPs) has become the object of intense recent interest in relation to physiological (“good”) and pathological (“bad”) vascular remodeling. Experimental evidence acquired in vitro and in vivo suggests that the major drivers of vascular remodeling, hemodynamics, injury, inflammation, and oxidative stress, regulate MMP expression and activity. Alternatively, nonspecific MMP inhibition seems to oppose remodeling, as suggested by the inhibition of intimal thickening and outward arterial remodeling. An emerging concept is that MMP-related genetic variations may contribute to heterogeneity in the presentation and natural history of atherosclerosis. The hypothesis that MMPs contribute to weakening of atherosclerotic plaques is especially attractive for the potential development of therapeutic interventions aimed at preventing plaque disruption (“the ugly”), a major cause of acute cardiovascular events. However, the current lack of appropriate experimental tools, including availability of specific MMP inhibitors and pertinent animal models, still limits our understanding of the many actions and relative contributions of specific MMPs. Our future potential ability to control vascular remodeling via regulation of MMPs will also depend on reaching a consensus of what is indeed “good” or “bad” vascular remodeling, concepts that have continued to evolve and change.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fate of the mammalian cardiac neural crest.

              A subpopulation of neural crest termed the cardiac neural crest is required in avian embryos to initiate reorganization of the outflow tract of the developing cardiovascular system. In mammalian embryos, it has not been previously experimentally possible to study the long-term fate of this population, although there is strong inference that a similar population exists and is perturbed in a number of genetic and teratogenic contexts. We have employed a two-component genetic system based on Cre/lox recombination to label indelibly the entire mouse neural crest population at the time of its formation, and to detect it at any time thereafter. Labeled cells are detected throughout gestation and in postnatal stages in major tissues that are known or predicted to be derived from neural crest. Labeling is highly specific and highly efficient. In the region of the heart, neural-crest-derived cells surround the pharyngeal arch arteries from the time of their formation and undergo an altered distribution coincident with the reorganization of these vessels. Labeled cells populate the aorticopulmonary septum and conotruncal cushions prior to and during overt septation of the outflow tract, and surround the thymus and thyroid as these organs form. Neural-crest-derived mesenchymal cells are abundantly distributed in midgestation (E9.5-12.5), and adult derivatives of the third, fourth and sixth pharyngeal arch arteries retain a substantial contribution of labeled cells. However, the population of neural-crest-derived cells that infiltrates the conotruncus and which surrounds the noncardiac pharyngeal organs is either overgrown or selectively eliminated as development proceeds, resulting for these tissues in a modest to marginal contribution in late fetal and postnatal life.
                Bookmark

                Author and article information

                Journal
                9604648
                20305
                Nat Biotechnol
                Nat. Biotechnol.
                Nature biotechnology
                1087-0156
                1546-1696
                4 January 2012
                15 January 2012
                01 August 2012
                : 30
                : 2
                : 165-173
                Affiliations
                [1 ]The Anne McLaren Laboratory for Regenerative Medicine, University of Cambridge, West Forvie Building, Forvie Site, Robinson Way, Cambridge CB2 0SZ, United Kingdom.
                [2 ]Division of Cardiovascular Medicine, University of Cambridge, ACCI Level 6, Box 110, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ.
                Author notes
                Correspondence should be addressed to S.S. ( ss661@ 123456cam.ac.uk ).
                Article
                UKMS40307
                10.1038/nbt.2107
                3272383
                22252507
                08b862fd-dd91-4949-86de-bf9d1d00aeaf

                Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Funding
                Funded by: Wellcome Trust :
                Award ID: 078390 || WT
                Categories
                Article

                Biotechnology
                Biotechnology

                Comments

                Comment on this article