30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Regulation of seminiferous tubule-associated stem Leydig cells in adult rat testes

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Testicular Leydig cells are the primary source of testosterone in males. Adult Leydig cells have been shown to arise from stem cells present in the neonatal testis. Once established, adult Leydig cells turn over only slowly during adult life, but when these cells are eliminated experimentally from the adult testis, new Leydig cells rapidly reappear. As in the neonatal testis, stem cells in the adult testis are presumed to be the source of the new Leydig cells. As yet, the mechanisms involved in regulating the proliferation and differentiation of these stem cells remain unknown. We developed a unique in vitro system of cultured seminiferous tubules to assess the ability of factors from the seminiferous tubules to regulate the proliferation of the tubule-associated stem cells, and their subsequent entry into the Leydig cell lineage. The proliferation of the stem Leydig cells was stimulated by paracrine factors including Desert hedgehog (DHH), basic fibroblast growth factor (FGF2), platelet-derived growth factor (PDGF), and activin. Suppression of proliferation occurred with transforming growth factor β (TGF-β). The differentiation of the stem cells was regulated positively by DHH, lithium- induced signaling, and activin, and negatively by TGF-β, PDGFBB, and FGF2. DHH functioned as a commitment factor, inducing the transition of stem cells to the progenitor stage and thus into the Leydig cell lineage. Additionally, CD90 (Thy1) was found to be a unique stem cell surface marker that was used to obtain purified stem cells by flow cytometry.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          The effect of testosterone replacement on endogenous inflammatory cytokines and lipid profiles in hypogonadal men.

          Testosterone has immune-modulating properties, and current in vitro evidence suggests that testosterone may suppress the expression of the proinflammatory cytokines TNFalpha, IL-1beta, and IL-6 and potentiate the expression of the antiinflammatory cytokine IL-10. We report a randomized, single-blind, placebo-controlled, crossover study of testosterone replacement (Sustanon 100) vs. placebo in 27 men (age, 62 +/- 9 yr) with symptomatic androgen deficiency (total testosterone, 4.4 +/- 1.2 nmol/liter; bioavailable testosterone, 2.4 +/- 1.1 nmol/liter). Compared with placebo, testosterone induced reductions in TNFalpha (-3.1 +/- 8.3 vs. 1.3 +/- 5.2 pg/ml; P = 0.01) and IL-1beta (-0.14 +/- 0.32 vs. 0.18 +/- 0.55 pg/ml; P = 0.08) and an increase in IL-10 (0.33 +/- 1.8 vs. -1.1 +/- 3.0 pg/ml; P = 0.01); the reductions of TNFalpha and IL-1beta were positively correlated (r(S) = 0.588; P = 0.003). In addition, a significant reduction in total cholesterol was recorded with testosterone therapy (-0.25 +/- 0.4 vs. -0.004 +/- 0.4 mmol/liter; P = 0.04). In conclusion, testosterone replacement shifts the cytokine balance to a state of reduced inflammation and lowers total cholesterol. Twenty of these men had established coronary disease, and because total cholesterol is a cardiovascular risk factor, and proinflammatory cytokines mediate the development and complications associated with atheromatous plaque, these properties may have particular relevance in men with overt vascular disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Characterization of Nestin-positive stem Leydig cells as a potential source for the treatment of testicular Leydig cell dysfunction

            The ability to identify and isolate lineage-specific stem cells from adult tissues could facilitate cell replacement therapy. Leydig cells (LCs) are the primary source of androgen in the mammalian testis, and the prospective identification of stem Leydig cells (SLCs) may offer new opportunities for treating testosterone deficiency. Here, in a transgenic mouse model expressing GFP driven by the Nestin (Nes) promoter, we observed Nes-GFP+ cells located in the testicular interstitial compartment where SLCs normally reside. We showed that these Nes-GFP+ cells expressed LIFR and PDGFR-α, but not LC lineage markers. We further observed that these cells were capable of clonogenic self-renewal and extensive proliferation in vitro and could differentiate into neural or mesenchymal cell lineages, as well as LCs, with the ability to produce testosterone, under defined conditions. Moreover, when transplanted into the testes of LC-disrupted or aging models, the Nes-GFP+ cells colonized the interstitium and partially increased testosterone production, and then accelerated meiotic and post-meiotic germ cell recovery. In addition, we further demonstrated that CD51 might be a putative cell surface marker for SLCs, similar with Nestin. Taken together, these results suggest that Nes-GFP+ cells from the testis have the characteristics of SLCs, and our study would shed new light on developing stem cell replacement therapy for testosterone deficiency.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              In search of rat stem Leydig cells: identification, isolation, and lineage-specific development.

              Leydig cells (LCs) are thought to differentiate from spindle-shaped precursor cells that exhibit some aspects of differentiated function, including 3beta-hydroxysteroid dehydrogenase (3betaHSD) activity. The precursor cells ultimately derive from undifferentiated stem LCs (SLCs), which are postulated to be present in testes before the onset of precursor cell differentiation. We searched for cells in the neonatal rat testis with the abilities to: (i) proliferate and expand indefinitely in vitro (self renew); (ii) differentiate (i.e., 3betaHSD and ultimately synthesize testosterone); and (iii) when transplanted into host rat testes, colonize the interstitium and subsequently differentiate in vivo. At 1 week postpartum, spindle-shaped cells were seen in the testicular interstitium that differed from the precursor cells in that they were 3betaHSD-negative, luteinizing hormone (LH) receptor (LHR)-negative, and platelet-derived growth factor receptor alpha (PDGFR alpha)-positive. These cells were purified from the testes of 1-week-old rats. The cells contained proteins known to be involved in LC development, including GATA4, c-kit receptor, and leukemia inhibitory factor receptor. The putative SLCs expanded over the course of 6 months while remaining undifferentiated. When treated in media that contained thyroid hormone, insulin-like growth factor I, and LH, 40% of the putative SLCs came to express 3betaHSD and to synthesize testosterone. When transplanted into host rat testes from which LCs had been eliminated, the putative SLCs colonized the interstitium and subsequently expressed 3betaHSD, demonstrating their ability to differentiate in vivo. We conclude that these cells are likely to be the sought-after SLCs.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proc Natl Acad Sci USA
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                March 08 2016
                March 08 2016
                March 08 2016
                February 29 2016
                : 113
                : 10
                : 2666-2671
                Article
                10.1073/pnas.1519395113
                4790979
                26929346
                08ef0332-7542-43b6-a40f-6ced20959d1d
                © 2016

                Free to read

                http://www.pnas.org/site/misc/userlicense.xhtml

                History

                Comments

                Comment on this article