46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      TGF-beta1 promotes microglial amyloid-beta clearance and reduces plaque burden in transgenic mice.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abnormal accumulation of the amyloid-beta peptide (Abeta) in the brain appears crucial to pathogenesis in all forms of Alzheimer disease (AD), but the underlying mechanisms in the sporadic forms of AD remain unknown. Transforming growth factor beta1 (TGF-beta1), a key regulator of the brain's responses to injury and inflammation, has been implicated in Abeta deposition in vivo. Here we demonstrate that a modest increase in astroglial TGF-beta1 production in aged transgenic mice expressing the human beta-amyloid precursor protein (hAPP) results in a three-fold reduction in the number of parenchymal amyloid plaques, a 50% reduction in the overall Abeta load in the hippocampus and neocortex, and a decrease in the number of dystrophic neurites. In mice expressing hAPP and TGF-beta1, Abeta accumulated substantially in cerebral blood vessels, but not in parenchymal plaques. In human cases of AD, Abeta immunoreactivity associated with parenchymal plaques was inversely correlated with Abeta in blood vessels and cortical TGF-beta1 mRNA levels. The reduction of parenchymal plaques in hAPP/TGF-beta1 mice was associated with a strong activation of microglia and an increase in inflammatory mediators. Recombinant TGF-beta1 stimulated Abeta clearance in microglial cell cultures. These results demonstrate that TGF-beta1 is an important modifier of amyloid deposition in vivo and indicate that TGF-beta1 might promote microglial processes that inhibit the accumulation of Abeta in the brain parenchyma.

          Related collections

          Author and article information

          Journal
          Nat Med
          Nature medicine
          Springer Science and Business Media LLC
          1078-8956
          1078-8956
          May 2001
          : 7
          : 5
          Affiliations
          [1 ] Gladstone Institute of Neurological Disease, University of California, San Francisco, California, USA. twysscoray@gladstone.ucsf.edu
          Article
          87945
          10.1038/87945
          11329064
          08fc3e51-0158-4c7c-bba3-dfb5a8f8d492
          History

          Comments

          Comment on this article