8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Biological Effects of Space Radiation on Human Cells: History, Advances and Outcomes

      , ,
      Journal of Radiation Research
      Japan Radiation Research Society

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: found
          • Article: not found

          Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses.

          DNA double-strand breaks (DSBs) are generally accepted to be the most biologically significant lesion by which ionizing radiation causes cancer and hereditary disease. However, no information on the induction and processing of DSBs after physiologically relevant radiation doses is available. Many of the methods used to measure DSB repair inadvertently introduce this form of damage as part of the methodology, and hence are limited in their sensitivity. Here we present evidence that foci of gamma-H2AX (a phosphorylated histone), detected by immunofluorescence, are quantitatively the same as DSBs and are capable of quantifying the repair of individual DSBs. This finding allows the investigation of DSB repair after radiation doses as low as 1 mGy, an improvement by several orders of magnitude over current methods. Surprisingly, DSBs induced in cultures of nondividing primary human fibroblasts by very low radiation doses (approximately 1 mGy) remain unrepaired for many days, in strong contrast to efficient DSB repair that is observed at higher doses. However, the level of DSBs in irradiated cultures decreases to that of unirradiated cell cultures if the cells are allowed to proliferate after irradiation, and we present evidence that this effect may be caused by an elimination of the cells carrying unrepaired DSBs. The results presented are in contrast to current models of risk assessment that assume that cellular responses are equally efficient at low and high doses, and provide the opportunity to employ gamma-H2AX foci formation as a direct biomarker for human exposure to low quantities of ionizing radiation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The in vitro micronucleus technique.

            M Fenech (2000)
            The study of DNA damage at the chromosome level is an essential part of genetic toxicology because chromosomal mutation is an important event in carcinogenesis. The micronucleus assays have emerged as one of the preferred methods for assessing chromosome damage because they enable both chromosome loss and chromosome breakage to be measured reliably. Because micronuclei can only be expressed in cells that complete nuclear division a special method was developed that identifies such cells by their binucleate appearance when blocked from performing cytokinesis by cytochalasin-B (Cyt-B), a microfilament-assembly inhibitor. The cytokinesis-block micronucleus (CBMN) assay allows better precision because the data obtained are not confounded by altered cell division kinetics caused by cytotoxicity of agents tested or sub-optimal cell culture conditions. The method is now applied to various cell types for population monitoring of genetic damage, screening of chemicals for genotoxic potential and for specific purposes such as the prediction of the radiosensitivity of tumours and the inter-individual variation in radiosensitivity. In its current basic form the CBMN assay can provide, using simple morphological criteria, the following measures of genotoxicity and cytotoxicity: chromosome breakage, chromosome loss, chromosome rearrangement (nucleoplasmic bridges), cell division inhibition, necrosis and apoptosis. The cytosine-arabinoside modification of the CBMN assay allows for measurement of excision repairable lesions. The use of molecular probes enables chromosome loss to be distinguished from chromosome breakage and importantly non-disjunction in non-micronucleated binucleated cells can be efficiently measured. The in vitro CBMN technique, therefore, provides multiple and complementary measures of genotoxicity and cytotoxicity which can be achieved with relative ease within one system. The basic principles and methods (including detailed scoring criteria for all the genotoxicity and cytotoxicity end-points) of the CBMN assay are described and areas for future development identified.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cancer risk from exposure to galactic cosmic rays: implications for space exploration by human beings.

              Space programmes are shifting toward planetary exploration, and in particular towards missions by human beings to the moon and Mars. However, exposure to space radiation is an important barrier to exploration of the solar system by human beings because of the biological effects of high-energy heavy ions. These ions have a high charge and energy, are the main contributors to radiation risk in deep space, and their biological effects are understood poorly. Predictions of the nature and magnitude of risks posed by exposure to radiation in space are subject to many uncertainties. In recent years, worldwide efforts have focussed on an increased understanding of the oncogenic potential of galactic cosmic rays. A review of the new results in this specialty will be presented here.
                Bookmark

                Author and article information

                Journal
                Journal of Radiation Research
                JRR
                Japan Radiation Research Society
                0449-3060
                1349-9157
                2011
                2011
                : 52
                : 2
                : 126-146
                Article
                10.1269/jrr.10128
                0902fab6-2b53-4a71-bd41-df35fcf3df49
                © 2011
                History

                Comments

                Comment on this article