17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Tumor-necrosis factor impairs CD4+ T cell–mediated immunological control in chronic viral infection

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Persistent viral infections are characterized by the simultaneous presence of chronic inflammation and T cell dysfunction. In prototypic models of chronicity--infection with human immunodeficiency virus (HIV) or lymphocytic choriomeningitis virus (LCMV)--we used transcriptome-based modeling to reveal that CD4(+) T cells were co-exposed not only to multiple inhibitory signals but also to tumor-necrosis factor (TNF). Blockade of TNF during chronic infection with LCMV abrogated the inhibitory gene-expression signature in CD4(+) T cells, including reduced expression of the inhibitory receptor PD-1, and reconstituted virus-specific immunity, which led to control of infection. Preventing signaling via the TNF receptor selectively in T cells sufficed to induce these effects. Targeted immunological interventions to disrupt the TNF-mediated link between chronic inflammation and T cell dysfunction might therefore lead to therapies to overcome persistent viral infection.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Selection of genetic variants of lymphocytic choriomeningitis virus in spleens of persistently infected mice. Role in suppression of cytotoxic T lymphocyte response and viral persistence

          We studied the mechanism of lymphocytic choriomeningitis virus (LCMV) persistence and the suppression of cytotoxic T lymphocyte (CTL) responses in BALB/c WEHI mice infected at birth with LCMV Armstrong strain. Using adoptive transfer experiments we found that spleen cells from persistently infected (carrier) mice actively suppressed the expected LCMV-specific CTL response of spleen cells from normal adult mice. The suppression was specific for the CTL response and LCMV - specific antibody responses were not affected. Associated with the specific CTL suppression was the establishment of persistent LCMV infection. The transfer of spleen or lymph node cells containing LCMV - specific CTL resulted in virus clearance and prevented establishment of the carrier state. The suppression of LCMV -specific CTL responses by carrier spleen cells is not mediated by a suppressor cell, but is due to the presence of genetic variants of LCMV in spleens of carrier mice. Such virus variants selectively suppress LCMV-specific CTL responses and cause persistent infections in immunocompetent mice. In striking contrast, wild-type LCMV Armstrong, from which these variants were generated, induces a potent CTL response in immunocompetent mice and the LCMV infection is rapidly cleared. Our results show that LCMV variants that emerge during infection in vivo play a crucial role in the suppression of virus-specific CTL responses and in the maintenance of virus persistence.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans.

            Systemic lupus erythematosus (SLE, OMIM 152700) is a complex autoimmune disease that affects 0.05% of the Western population, predominantly women. A number of susceptibility loci for SLE have been suggested in different populations, but the nature of the susceptibility genes and mutations is yet to be identified. We previously reported a susceptibility locus (SLEB2) for Nordic multi-case families. Within this locus, the programmed cell death 1 gene (PDCD1, also called PD-1) was considered the strongest candidate for association with the disease. Here, we analyzed 2,510 individuals, including members of five independent sets of families as well as unrelated individuals affected with SLE, for single-nucleotide polymorphisms (SNPs) that we identified in PDCD1. We show that one intronic SNP in PDCD1 is associated with development of SLE in Europeans (found in 12% of affected individuals versus 5% of controls; P = 0.00001, r.r. (relative risk) = 2.6) and Mexicans (found in 7% of affected individuals versus 2% of controls; P = 0.0009, r.r. = 3.5). The associated allele of this SNP alters a binding site for the runt-related transcription factor 1 (RUNX1, also called AML1) located in an intronic enhancer, suggesting a mechanism through which it can contribute to the development of SLE in humans.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              T cell differentiation in chronic infection and cancer: functional adaptation or exhaustion?

              Chronic viral infections and malignant tumours induce T cells that have a reduced ability to secrete effector cytokines and have upregulated expression of the inhibitory receptor PD1 (programmed cell death protein 1). These features have so far been considered to mark terminally differentiated 'exhausted' T cells. However, several recent clinical and experimental observations indicate that phenotypically exhausted T cells can still mediate a crucial level of pathogen or tumour control. In this Opinion article, we propose that the exhausted phenotype results from a differentiation process in which T cells stably adjust their effector capacity to the needs of chronic infection. We argue that this phenotype is optimized to cause minimal tissue damage while still mediating a critical level of pathogen control. In contrast to the presently held view of functional exhaustion, this new concept better reflects the pathophysiology and clinical manifestations of persisting infections, and it provides a rationale for emerging therapies that enhance T cell activity in chronic infection and cancer by blocking inhibitory receptors.
                Bookmark

                Author and article information

                Journal
                Nature Immunology
                Nat Immunol
                Springer Science and Business Media LLC
                1529-2908
                1529-2916
                May 2016
                March 7 2016
                May 2016
                : 17
                : 5
                : 593-603
                Article
                10.1038/ni.3399
                26950238
                09290101-1334-43e0-ae4a-519aeb93bf72
                © 2016

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article