Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Direct bioconversion of brown algae into ethanol by thermophilic bacterium Defluviitalea phaphyphila

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Brown algae are promising feedstocks for biofuel production with inherent advantages of no structural lignin, high growth rate, and no competition for land and fresh water. However, it is difficult for one microorganism to convert all components of brown algae with different oxidoreduction potentials to ethanol. Defluviitalea phaphyphila Alg1 is the first characterized thermophilic bacterium capable of direct utilization of brown algae.

          Results

          Defluviitalea phaphyphila Alg1 can simultaneously utilize mannitol, glucose, and alginate to produce ethanol, and high ethanol yields of 0.47 g/g-mannitol, 0.44 g/g-glucose, and 0.3 g/g-alginate were obtained. A rational redox balance system under obligate anaerobic condition in fermenting brown algae was revealed in D. phaphyphila Alg1 through genome and redox analysis. The excess reducing equivalents produced from mannitol metabolism were equilibrated by oxidizing forces from alginate assimilation. Furthermore, D. phaphyphila Alg1 can directly utilize unpretreated kelp powder, and 10 g/L of ethanol was accumulated within 72 h with an ethanol yield of 0.25 g/g-kelp. Microscopic observation further demonstrated the deconstruction process of brown algae cell by D. phaphyphila Alg1.

          Conclusions

          The integrated biomass deconstruction system of D. phaphyphila Alg1, as well as its high ethanol yield, provided us an excellent alternative for brown algae bioconversion at elevated temperature.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Recent progress in consolidated bioprocessing.

          Consolidated bioprocessing, or CBP, the conversion of lignocellulose into desired products in one step without added enzymes, has been a subject of increased research effort in recent years. In this review, the economic motivation for CBP is addressed, advances and remaining obstacles for CBP organism development are reviewed, and we comment briefly on fundamental aspects. For CBP organism development beginning with microbes that have native ability to utilize insoluble components of cellulosic biomass, key recent advances include the development of genetic systems for several cellulolytic bacteria, engineering a thermophilic bacterium to produce ethanol at commercially attractive yields and titers, and engineering a cellulolytic microbe to produce butanol. For CBP organism development, beginning with microbes that do not have this ability and thus requiring heterologous expression of a saccharolytic enzyme system, high-yield conversion of model cellulosic substrates and heterologous expression of CBH1 and CBH2 in yeast at levels believed to be sufficient for an industrial process have recently been demonstrated. For both strategies, increased emphasis on realizing high performance under industrial conditions is needed. Continued exploration of the underlying fundamentals of microbial cellulose utilization is likely to be useful in order to guide the choice and development of CBP systems. Copyright © 2011 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Marine macroalgae: an untapped resource for producing fuels and chemicals.

            As world energy demand continues to rise and fossil fuel resources are depleted, marine macroalgae (i.e., seaweed) is receiving increasing attention as an attractive renewable source for producing fuels and chemicals. Marine plant biomass has many advantages over terrestrial plant biomass as a feedstock. Recent breakthroughs in converting diverse carbohydrates from seaweed biomass into liquid biofuels (e.g., bioethanol) through metabolic engineering have demonstrated potential for seaweed biomass as a promising, although relatively unexplored, source for biofuels. This review focuses on up-to-date progress in fermentation of sugars from seaweed biomass using either natural or engineered microbial cells, and also provides a comprehensive overview of seaweed properties, cultivation and harvesting methods, and major steps in the bioconversion of seaweed biomass to biofuels. Copyright © 2012 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield.

              We report engineering Thermoanaerobacterium saccharolyticum, a thermophilic anaerobic bacterium that ferments xylan and biomass-derived sugars, to produce ethanol at high yield. Knockout of genes involved in organic acid formation (acetate kinase, phosphate acetyltransferase, and L-lactate dehydrogenase) resulted in a strain able to produce ethanol as the only detectable organic product and substantial changes in electron flow relative to the wild type. Ethanol formation in the engineered strain (ALK2) utilizes pyruvate:ferredoxin oxidoreductase with electrons transferred from ferredoxin to NAD(P), a pathway different from that in previously described microbes with a homoethanol fermentation. The homoethanologenic phenotype was stable for >150 generations in continuous culture. The growth rate of strain ALK2 was similar to the wild-type strain, with a reduction in cell yield proportional to the decreased ATP availability resulting from acetate kinase inactivation. Glucose and xylose are co-utilized and utilization of mannose and arabinose commences before glucose and xylose are exhausted. Using strain ALK2 in simultaneous hydrolysis and fermentation experiments at 50 degrees C allows a 2.5-fold reduction in cellulase loading compared with using Saccharomyces cerevisiae at 37 degrees C. The maximum ethanol titer produced by strain ALK2, 37 g/liter, is the highest reported thus far for a thermophilic anaerobe, although further improvements are desired and likely possible. Our results extend the frontier of metabolic engineering in thermophilic hosts, have the potential to significantly lower the cost of cellulosic ethanol production, and support the feasibility of further cost reductions through engineering a diversity of host organisms.
                Bookmark

                Author and article information

                Contributors
                Jisq@qibebt.ac.cn
                wangbing@qibebt.ac.cn
                lvming@qibebt.ac.cn
                +86-532-80662655 , lifl@qibebt.ac.cn
                Journal
                Biotechnol Biofuels
                Biotechnol Biofuels
                Biotechnology for Biofuels
                BioMed Central (London )
                1754-6834
                1 April 2016
                1 April 2016
                2016
                : 9
                : 81
                Affiliations
                Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101 People’s Republic of China
                Article
                494
                10.1186/s13068-016-0494-1
                4818487
                27042210
                094f983b-f0f9-4916-9236-e6312b7f2fa4
                © Ji et al. 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 14 December 2015
                : 22 March 2016
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001809, National Natural Science Foundation of China;
                Award ID: 41506155
                Award Recipient :
                Funded by: Natural Science Foundation of Shandong Province (CN) for Distinguished Young Scholar
                Award ID: JQ201507
                Award Recipient :
                Funded by: the Science and Technology Develop Project of Shandong province
                Award ID: 2014GHY115027
                Award Recipient :
                Funded by: Qingdao Institute of Biomass Energy and Bioprocess Technology Director Innovation Foundation for Young Scientists
                Award ID: Y37207210B
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2016

                Biotechnology
                brown algae,redox balance,bioethanol,marine thermophile,defluviitalea phaphyphila
                Biotechnology
                brown algae, redox balance, bioethanol, marine thermophile, defluviitalea phaphyphila

                Comments

                Comment on this article