2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Were the synapsids primitively endotherms? A palaeohistological approach using phylogenetic eigenvector maps

      1 , 1
      Philosophical Transactions of the Royal Society B: Biological Sciences
      The Royal Society

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The acquisition of mammalian endothermy is poorly constrained both phylogenetically and temporally. Here, we inferred the resting metabolic rates (RMRs) and the thermometabolic regimes (endothermy or ectothermy) of a sample of eight extinct synapsids using palaeohistology, phylogenetic eigenvector maps (PEMs), and a sample of 17 extant tetrapods of known RMR (quantified using respirometry). We inferred high RMR values and an endothermic metabolism for the anomodonts ( Lystrosaurus sp., Oudenodon bainii ) and low RMR values and an ectothermic metabolism for Clepsydrops collettii, Dimetrodon sp., Edaphosaurus boanerges, Mycterosaurus sp., Ophiacodon uniformis and Sphenacodon sp. A maximum-likelihood ancestral states reconstruction of RMRs performed using the values inferred for extinct synapsids, and the values measured using respirometry in extant tetrapods, shows that the nodes Anomodontia and Mammalia were primitively endotherms. Finally, we performed a parsimony optimization of the presence of endothermy using the results obtained in the present study and those obtained in previous studies that used PEMs. For this, we assigned to each extinct taxon a thermometabolic regime (ectothermy or endothermy) depending on whether the inferred values were significantly higher, lower or not significantly different from the RMR value separating ectotherms from endotherms (1.5 ml O 2 h −1 g −0.67 ). According to this optimization, endothermy arose independently in Archosauromorpha, Sauropterygia and Therapsida. This article is part of the theme issue ‘Vertebrate palaeophysiology’.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: not found
          • Article: not found

          Phylogenies and the Comparative Method: A General Approach to Incorporating Phylogenetic Information into the Analysis of Interspecific Data

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bone typology and growth rate: testing and quantifying 'Amprino's rule' in the mallard (Anas platyrhynchos).

            Periosteal bone histology expresses its rate of deposition. This fundamental relationship between bone structure and growth dynamics, first assumed by Amprino many decades ago, was quantified in preliminary studies, but never statistically tested. Moreover, the precise typological characters of bone tissue linked to growth rate remained poorly known. Here, we present the first statistical analysis of 'Amprino's rule', measured on comprehensive growth series of the mallard, Anas platyrhynchos. Growth rates were assessed by fluorescent labelling. Bone typology was described according to Ricqlès' typological classification. Results show that the presence and proportion of primary osteons, two consequences of bone initial porosity at the time of its deposit, are strongly related to bone growth rate. However, no significant relationship between primary osteons orientation and bone growth rate could be detected, at least for osteonal orientations (longitudinal, laminar and reticular) and growth rates values observed in mallard long bones. These results suggest that Amprino's rule holds for some major typological characters of primary compact bone tissues (i.e. primary osteons presence and proportion). However, it is irrelevant to some other characters (i.e. osteonal orientation), the meaning of which remains to be discovered.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Assessing a relationship between bone microstructure and growth rate: a fluorescent labelling study in the king penguin chick (Aptenodytes patagonicus).

              Microstructure-function relationships remain poorly understood in primary bone tissues. The relationship between bone growth rate and bone tissue type, although documented in some species by previous works, remains somewhat unclear and controversial. We assessed this relationship in a species with extreme adaptations, the king penguin (Aptenodytes patagonicus). These birds have a peculiar growth, interrupted 3 months after hatching by the austral winter. Before this interruption, chicks undergo extremely rapid statural and ponderal growth. We recorded experimentally (by means of fluorescent labelling) the growth rate of bone tissue in four long bones (humerus, radius, femur and tibiotarsus) of four king penguin chicks during their fastest phase of growth (3-5 weeks after hatching) and identified the associated bone tissue types ('laminar', 'longitudinal', 'reticular' or 'radial' fibro-lamellar bone tissue). We found the highest bone tissue growth rate known to date, up to 171 microm day(-1) (mean 55 microm day(-1)). There was a highly significant relationship between bone tissue type and growth rate (P<10(-6)). Highest rates were obtained with the radial microarchitecture of fibro-lamellar bone, where cavities in the woven network are aligned radially. This result supports the heuristic value of a relationship between growth rate and bone primary microstructure. However, we also found that growth rates of bone tissue types vary according to the long bone considered (P<10(-5)) (e.g. growth rates were 38% lower in the radius than in the other long bones), a result that puts some restriction on the applicability of absolute growth rate values (e.g. to fossil species). The biomechanical disadvantages of accelerated bone growth are discussed in relation to the locomotor behaviour of the chicks during their first month of life.
                Bookmark

                Author and article information

                Journal
                Philosophical Transactions of the Royal Society B: Biological Sciences
                Phil. Trans. R. Soc. B
                The Royal Society
                0962-8436
                1471-2970
                January 13 2020
                March 02 2020
                January 13 2020
                March 02 2020
                : 375
                : 1793
                : 20190138
                Affiliations
                [1 ]Sorbonne Université, Muséum national d'Histoire naturelle, CNRS, Centre de Recherche en Paléontologie—Paris (CR2P, UMR 7207), 4 place Jussieu, 75005 Paris, France
                Article
                10.1098/rstb.2019.0138
                7017441
                31928185
                099e4ebe-6aeb-4156-96f8-4e57be49b0a8
                © 2020

                https://royalsociety.org/-/media/journals/author/Licence-to-Publish-20062019-final.pdf

                https://royalsociety.org/journals/ethics-policies/data-sharing-mining/

                History

                Comments

                Comment on this article