2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Antiviral activity of natural humic substances and shilajit materials against HIV-1: relation to structure

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Natural products, such as humic substances (HS) and shilajit, are known to possess antiviral activity. Humic-like components are often called as carriers of biological activity of shilajit. The goal of this study was to evaluate anti-HIV activity of well characterized HS isolated from coal, peat, and peloids, and compare it to that of water-soluble organic matter (OM) isolated from different samples of Shilajit. The set of humic materials included 16 samples of different fractional composition: humic acid (HA), hymatomelanic acid (HMA), fulvic acid (FA). The set of shilajit OM included 19 samples of different geographic origin and level of alteration. The HIV-1 p24 antigen assay and cell viability test were used for assessment of antiviral activity. The HIV-1 Bru strain was used to infect CEM-SS cells. The obtained EC50 values varied from 0.37 to 1.4 mg·L -1 for the humic materials, and from 14 to 142 mg·L -1 for the shilajit OM. Hence, all humic materials used in this study outcompeted largely the shilajit materials with respect to anti-HIV activity: For the humic materials, the structure-activity relationships revealed strong correlation between the EC50 values and the content of aromatic carbon indicating the most important role of aromatic structures. For shilajit OM, the reverse relationship was obtained indicating the different mechanism of shilajit activity. The FTICRMS molecular assignments were used for ChEMBL data mining in search of the active humic molecules. As potential carriers of antiviral activity were identified aromatic structures with alkyl substituents, terpenoids, N-containing analogs of typical flavonoids, and aza-podophyllotoxins. The conclusion was made that the typical humic materials and Shilajit differ greatly in molecular composition, and the humic materials have substantial preferences as a natural source of antiviral agents as compared to shilajit.

          Highlights

          • Comparison of anti-HIV activity measured for the two large sets of humic materials and Shilajit water extracts demonstrated much higher activity of the humic materials.

          • Structure-activity relationships revealed leading role of aromatic structures in anti-HIV activity of humic substances, and the opposite trend was observed for shilajit.

          • 13C NMR and FTICR MS studies revealed structural similarity of shilajit extract to fulvic acid.

          • Different mode of antiviral action is suggested for aromatics-rich humic materials (humic acids, hymatomelanic acids) and N-rich shilajit.

          • This work was partially supported by the Russian Science Foundation: project 20-63-47070 in the part of structural characterization of the humic materials used in this study, and project 19-75-00092 in the part of FTICR MS data-mining and chemometrics.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          An interactive web-based dashboard to track COVID-19 in real time

          In December, 2019, a local outbreak of pneumonia of initially unknown cause was detected in Wuhan (Hubei, China), and was quickly determined to be caused by a novel coronavirus, 1 namely severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The outbreak has since spread to every province of mainland China as well as 27 other countries and regions, with more than 70 000 confirmed cases as of Feb 17, 2020. 2 In response to this ongoing public health emergency, we developed an online interactive dashboard, hosted by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University, Baltimore, MD, USA, to visualise and track reported cases of coronavirus disease 2019 (COVID-19) in real time. The dashboard, first shared publicly on Jan 22, illustrates the location and number of confirmed COVID-19 cases, deaths, and recoveries for all affected countries. It was developed to provide researchers, public health authorities, and the general public with a user-friendly tool to track the outbreak as it unfolds. All data collected and displayed are made freely available, initially through Google Sheets and now through a GitHub repository, along with the feature layers of the dashboard, which are now included in the Esri Living Atlas. The dashboard reports cases at the province level in China; at the city level in the USA, Australia, and Canada; and at the country level otherwise. During Jan 22–31, all data collection and processing were done manually, and updates were typically done twice a day, morning and night (US Eastern Time). As the outbreak evolved, the manual reporting process became unsustainable; therefore, on Feb 1, we adopted a semi-automated living data stream strategy. Our primary data source is DXY, an online platform run by members of the Chinese medical community, which aggregates local media and government reports to provide cumulative totals of COVID-19 cases in near real time at the province level in China and at the country level otherwise. Every 15 min, the cumulative case counts are updated from DXY for all provinces in China and for other affected countries and regions. For countries and regions outside mainland China (including Hong Kong, Macau, and Taiwan), we found DXY cumulative case counts to frequently lag behind other sources; we therefore manually update these case numbers throughout the day when new cases are identified. To identify new cases, we monitor various Twitter feeds, online news services, and direct communication sent through the dashboard. Before manually updating the dashboard, we confirm the case numbers with regional and local health departments, including the respective centres for disease control and prevention (CDC) of China, Taiwan, and Europe, the Hong Kong Department of Health, the Macau Government, and WHO, as well as city-level and state-level health authorities. For city-level case reports in the USA, Australia, and Canada, which we began reporting on Feb 1, we rely on the US CDC, the government of Canada, the Australian Government Department of Health, and various state or territory health authorities. All manual updates (for countries and regions outside mainland China) are coordinated by a team at Johns Hopkins University. The case data reported on the dashboard aligns with the daily Chinese CDC 3 and WHO situation reports 2 for within and outside of mainland China, respectively (figure ). Furthermore, the dashboard is particularly effective at capturing the timing of the first reported case of COVID-19 in new countries or regions (appendix). With the exception of Australia, Hong Kong, and Italy, the CSSE at Johns Hopkins University has reported newly infected countries ahead of WHO, with Hong Kong and Italy reported within hours of the corresponding WHO situation report. Figure Comparison of COVID-19 case reporting from different sources Daily cumulative case numbers (starting Jan 22, 2020) reported by the Johns Hopkins University Center for Systems Science and Engineering (CSSE), WHO situation reports, and the Chinese Center for Disease Control and Prevention (Chinese CDC) for within (A) and outside (B) mainland China. Given the popularity and impact of the dashboard to date, we plan to continue hosting and managing the tool throughout the entirety of the COVID-19 outbreak and to build out its capabilities to establish a standing tool to monitor and report on future outbreaks. We believe our efforts are crucial to help inform modelling efforts and control measures during the earliest stages of the outbreak.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Therapeutic options for the 2019 novel coronavirus (2019-nCoV)

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              DataWarrior: an open-source program for chemistry aware data visualization and analysis.

              Drug discovery projects in the pharmaceutical industry accumulate thousands of chemical structures and ten-thousands of data points from a dozen or more biological and pharmacological assays. A sufficient interpretation of the data requires understanding, which molecular families are present, which structural motifs correlate with measured properties, and which tiny structural changes cause large property changes. Data visualization and analysis software with sufficient chemical intelligence to support chemists in this task is rare. In an attempt to contribute to filling the gap, we released our in-house developed chemistry aware data analysis program DataWarrior for free public use. This paper gives an overview of DataWarrior's functionality and architecture. Exemplarily, a new unsupervised, 2-dimensional scaling algorithm is presented, which employs vector-based or nonvector-based descriptors to visualize the chemical or pharmacophore space of even large data sets. DataWarrior uses this method to interactively explore chemical space, activity landscapes, and activity cliffs.
                Bookmark

                Author and article information

                Journal
                Environ Res
                Environ Res
                Environmental Research
                Elsevier Inc.
                0013-9351
                1096-0953
                14 October 2020
                14 October 2020
                : 110312
                Affiliations
                [a ]National Research Center – Institute of Immunology FMBA of Russia, Moscow, 115478, Russia
                [b ]Lomonosov Moscow State University, Department of Chemistry, Moscow, 119991, Russia
                [c ]Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region, 143026, Russia
                [d ]Scientific and Production Company “Sibdalmumiyo” Ltd., Novokuznetsk, Russia
                [e ]D.I. Ivanovsky Institute of Virology FSBI «National Research Center for Epidemiology and Microbiology Named After the Honorary Academician N.F. Gamaleya», Moscow, 123098 Russia
                Author notes
                []Corresponding author. Tel.: +7(903)6604864 ; Leninskie Gory 1-3 119991 Moscow Russia
                Article
                S0013-9351(20)31209-3 110312
                10.1016/j.envres.2020.110312
                7554000
                33065073
                09e128a4-98ef-4180-9d90-dd45893cdaa3
                © 2020 Elsevier Inc. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 15 May 2020
                : 8 September 2020
                : 2 October 2020
                Categories
                Article

                General environmental science
                humic acid,fulvic acid,shilajit,antiviral,hiv,structure-activity,13c nmr,fticr ms,chembl data-mining

                Comments

                Comment on this article