4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fusobacterium nucleatum prevents apoptosis in colorectal cancer cells via the ANO1 pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          : Chemotherapy failure derived from drug resistance is the most important reason causing the recurrence in colorectal cancer patients. Therefore, it is necessary to shed light on the mechanism of chemotherapy resistance in colorectal cancer patients.

          Methods

          : We looked into the contribution of Fusobacterium nucleatum and ANO1 to chemoresistance in the human colorectal carcinoma cell lines. We silence and overexpress ANO1 in HCT116 and HT29 cells with lentivirus and siRNA knockdown technique in the absence or presence of F. nucleatum, oxaliplatin or 5-fluorouracil (5-FU). ANO1, p-pg, cleaved PARP, cleaved caspase-3, and EGFR expression was measured by Western blot. Cell apoptosis was measured by flow cytometry.

          Results

          : We found that F. nucleatum promoted ANO1 expression on colon cancer cells. Moreover, ANO1 prevent colon cancer apoptosis from oxaliplatin and 5-FU. Additionally, knockdown ANO1 expression could block F. nucleatum protective effects and increase the apoptosis effects induced by oxaliplatin and 5-FU. Therefore, F. nucleatum might be biologically involved in the development of colon cancer chemoresistance via ANO1 pathway.

          Conclusions

          : Taken together, our findings provide a valuable insight into clinical management and therapy, which may ameliorate colorectal cancer patient outcomes.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis.

          Programmed cell death (PCD), referring to apoptosis, autophagy and programmed necrosis, is proposed to be death of a cell in any pathological format, when mediated by an intracellular program. These three forms of PCD may jointly decide the fate of cells of malignant neoplasms; apoptosis and programmed necrosis invariably contribute to cell death, whereas autophagy can play either pro-survival or pro-death roles. Recent bulk of accumulating evidence has contributed to a wealth of knowledge facilitating better understanding of cancer initiation and progression with the three distinctive types of cell death. To be able to decipher PCD signalling pathways may aid development of new targeted anti-cancer therapeutic strategies. Thus in this review, we present a brief outline of apoptosis, autophagy and programmed necrosis pathways and apoptosis-related microRNA regulation, in cancer. Taken together, understanding PCD and the complex interplay between apoptosis, autophagy and programmed necrosis may ultimately allow scientists and clinicians to harness the three types of PCD for discovery of further novel drug targets, in the future cancer treatment. © 2012 Blackwell Publishing Ltd.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular mechanisms of resistance to cetuximab and panitumumab in colorectal cancer.

            Personalized cancer medicine based on the genetic milieu of individual colorectal tumors has long been postulated, but until recently this concept was not supported by clinical evidence. The advent of the epidermal growth factor receptor (EGFR) -targeted monoclonal antibodies cetuximab and panitumumab has paved the way to the individualized treatment of metastatic colorectal cancer (mCRC). Here we discuss the evidence that mCRCs respond differently to EGFR-targeted agents and that the tumor-specific response has a genetic basis. We outline how, from the initial observation that cetuximab or panitumumab as monotherapy is effective only in 10% to 20% of mCRCs, knowledge has being gained on the molecular mechanisms underlying primary resistance to these agents. The role of oncogenic activation of EGFR downstream effectors such as KRAS, BRAF, PIK3CA, and PTEN on response to therapy is discussed. We suggest that CRCs lacking oncogenic alterations in these four genes have the highest probability of response to anti-EGFR therapies and are defined as "quadruple negative." The rapid and effective translation of these findings into predictive biomarkers to couple EGFR-targeted antibodies to the patients who benefit from them is presented as a paradigm of modern clinical oncology. Finally, unresolved questions such as understanding the molecular basis of response as well the mechanisms of secondary resistance are presented as the future fundamental goals in this research field.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Capecitabine: a review.

              Fluorouracil (FU) is an antimetabolite with activity against numerous types of neoplasms, including those of the breast, esophagus, larynx, and gastrointestinal and genitourinary tracts. Systemic toxicity, including neutropenia, stomatitis, and diarrhea, often occur due to cytotoxic nonselectivity. Capecitabine was developed as a prodrug of FU, with the goal of improving tolerability and intratumor drug concentrations through tumor-specific conversion to the active drug. The purpose of this article is to review the available information on capecitabine with respect to clinical pharmacology, mechanism of action, pharmacokinetic and pharmacodynamic properties, clinical efficacy for breast and colorectal cancer adverse-effect profile, documented drug interactions, dosage and administration, and future directions of ongoing research. Relevant English-language literature was identified through searches of PubMed (1966 to August 2004), International Pharmaceutical Abstracts (1977 to August 2004), and the Proceedings of the American Society of Clinical Oncology (January 1995 to August 2004). Search terms included capecitabine, Xeloda, breast cancer, and colorectal cancer. The references of the identified articles were reviewed for additional sources. In addition, product information was obtained from Roche Pharmaceuticals. Studies from the identified literature that addressed this article's objectives were selected for review, with preference given to Phase II/III trials. Capecitabine is an oral prodrug that is converted to its only active metabolite, FU, by thymidine phosphorylase. Higher levels of this enzyme are found in several tumors and the liver, compared with normal healthy tissue. In adults, capecitabine has a bioavailability of approximately 100% with a Cmax of 3.9 mg/L, Tmax of 1.5 to 2 hr, and AUC of 5.96 mg.h/L. The predominant route of elimination is renal, and dosage reduction of 75% is recommended in patients with creatinine clearance (CrCl) of 30 to 50 mL/min. The drug is contraindicated if CrCl is < 30 mL/min. Capecitabine has shown varying degrees of efficacy with acceptable tolerability in numerous cancers including prostate, renal cell, ovarian, and pancreatic, with the largest amount of evidence in metastatic breast and colorectal cancer. Single-agent capecitabine was compared with IV FU/leucovorin (LV) using the bolus Mayo Clinic regimen in 2 Phase III trials as first-line treatment for patients with metastatic colorectal cancer. Overall response rate (RR) favored the capecitabine arm (26% vs 17%, P < 0.001); however, this did not translate into a difference in time to progression (TTP) (4.6 months vs 4.7 months) or overall survival (OS) (12.9 months vs 12.8 months). In Phase II noncomparative trials, combinations of capecitabine with oxaliplatin or irinotecan have produced results similar to regimens combining FU/LV with the same agents in patients with colorectal cancer. In metastatic breast cancer patients who had received prior treatment with an anthracycline-based regimen, a Phase III trial comparing the combination of capecitabine with docetaxel versus docetaxel alone demonstrated superior objective tumor RR (42% vs 30%, P = 0.006), median TTP (6.1 months vs 4.2 months, P < 0.001), and median OS (14.5 months vs 11.5 months, P = 0.013) with the combination treatment. Noncomparative Phase II studies have also supported efficacy in patients with metastatic breast cancer pretreated with both anthracyclines and taxanes, yielding an overall RR of 15% to 29% and median OS of 9.4 to 15.2 months. The most common dose-limiting adverse effects associated with capecitabine monotherapy are hyperbilirubinemia, diarrhea, and hand-foot syndrome. Myelosuppression, fatigue and weakness, abdominal pain, and nausea have also been reported. Compared with bolus FU/LV, capecitabine was associated with more hand-foot syndrome but less stomatitis, alopecia, neutropenia requiring medical management, diarrhea, and nausea. Capecitabine has been reported to increase serum phenytoin levels and the international normalized ratio in patients receiving concomitant phenytoin and warfarin, respectively. The dose of capecitabine approved by the US Food and Drug Administration (FDA) for both metastatic colorectal and breast cancer is 1250 Mg/M2 given orally twice per day, usually separated by 12 hours for the first 2 weeks of every 3-week cycle. Capecitabine is currently approved by the FDA for use as first-line therapy in patients with metastatic colorectal cancer when single-agent fluoropyrimidine therapy is preferred. The drug is also approved for use as (1) a single agent in metastatic breast cancer patients who are resistant to both anthracycline- and paclitaxel-based regimens or in whom further anthracycline treatment is contra indicated and (2) in combination with docetaxel after failure of prior anthracycline-based chemotherapy. Single-agent and combination regimens have also shown benefits in patients with prostate, pancreatic, renal cell, and ovarian cancers. Improved tolerability and comparable efficacy compared with IV FU/LV in addition to oral administration make capecitabine an attractive option for the treatment of several types of cancers as well as the focus of future trials.
                Bookmark

                Author and article information

                Journal
                Cancer Manag Res
                Cancer Manag Res
                CMAR
                cancmanres
                Cancer Management and Research
                Dove
                1179-1322
                29 October 2019
                2019
                : 11
                : 9057-9066
                Affiliations
                [1 ]Department of Clinical Laboratory, Shanghai No. 8 People’s Hospital , Shanghai, China
                Author notes
                Correspondence: Pei Lu; Lei Wang Department of Clinical Laboratory, Shanghai No. 8 People’s Hospital , No. 8, Caobao Road, Xuhui District, Shanghai200235, China Tel +86 21 3428 4588; +86 21 3428 4588 Email lu_pei@sohu.com; wolei6610@126.com
                Article
                185766
                10.2147/CMAR.S185766
                6829176
                31802939
                0a4b0926-5f91-409e-99b5-b6c58a1124a4
                © 2019 Lu et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 29 August 2018
                : 10 December 2018
                Page count
                Figures: 6, References: 39, Pages: 1
                Categories
                Original Research

                Oncology & Radiotherapy
                colorectal cancer,f. nucleatum,chemoresistance,5-fluorouracil,oxaliplatin,ano1
                Oncology & Radiotherapy
                colorectal cancer, f. nucleatum, chemoresistance, 5-fluorouracil, oxaliplatin, ano1

                Comments

                Comment on this article