0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Chemical Warfare in the Battle of the Sexes

      ,
      Science
      American Association for the Advancement of Science (AAAS)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: found
          • Article: not found

          Cost of mating in Drosophila melanogaster females is mediated by male accessory gland products.

          Female Drosophila melanogaster with environmentally or genetically elevated rates of mating die younger than controls. This cost of mating is not attributable to receipt of sperm. We demonstrate here that seminal fluid products from the main cells of the male accessory gland are responsible for the cost of mating in females, and that increasing exposure to these products increases female death rate. Main-cell products are also involved in elevating the rate of female egg-laying, in reducing female receptivity to further matings and in removing or destroying sperm of previous mates. The cost of mating to females may therefore represent a side-effect of evolutionary conflict between males.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sexually antagonistic male adaptation triggered by experimental arrest of female evolution.

            W. Rice (1996)
            Each sex is part of the environment of the other sex. This may lead to perpetual coevolution between the sexes, when adaptation by one sex reduces fitness of the other. Indirect evidence comes from experiments with Drosophila melanogaster indicating that seminal fluid reduces the competitive ability of sperm from other males, thereby increasing male fitness. It also reduces a female's propensity to remate and increase her egg-laying rate. In contrast to these benefits to males, seminal fluid has substantial toxic side effects in females, with increasing quantity leading to decreasing female survival. Here I show that when female D. melanogaster are experimentally prevented from coevolving with males, males rapidly adapt to the static female phenotype. This male adaptation leads to a reduction in female survivorship, which is mediated by an increased rate of remating and increased toxicity of seminal fluid.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of Drosophila life span by olfaction and food-derived odors.

              Smell is an ancient sensory system present in organisms from bacteria to humans. In the nematode Caenorhabditis elegans, gustatory and olfactory neurons regulate aging and longevity. Using the fruit fly, Drosophila melanogaster, we showed that exposure to nutrient-derived odorants can modulate life span and partially reverse the longevity-extending effects of dietary restriction. Furthermore, mutation of odorant receptor Or83b resulted in severe olfactory defects, altered adult metabolism, enhanced stress resistance, and extended life span. Our findings indicate that olfaction affects adult physiology and aging in Drosophila, possibly through the perceived availability of nutritional resources, and that olfactory regulation of life span is evolutionarily conserved.
                Bookmark

                Author and article information

                Journal
                Science
                Science
                American Association for the Advancement of Science (AAAS)
                0036-8075
                1095-9203
                January 30 2014
                January 31 2014
                January 30 2014
                January 31 2014
                : 343
                : 6170
                : 491-492
                Article
                10.1126/science.1250174
                0aa0413f-1050-4ec0-b58c-b964fbc6277c
                © 2014
                History

                Comments

                Comment on this article