24
views
0
recommends
+1 Recommend
1 collections
    4
    shares

      International Journal of Nanomedicine (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the application of nanotechnology in diagnostics, therapeutics, and drug delivery systems throughout the biomedical field. Sign up for email alerts here.

      105,621 Monthly downloads/views I 7.033 Impact Factor I 10.9 CiteScore I 1.22 Source Normalized Impact per Paper (SNIP) I 1.032 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Delivery of miR-375 and doxorubicin hydrochloride by lipid-coated hollow mesoporous silica nanoparticles to overcome multiple drug resistance in hepatocellular carcinoma

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Multidrug resistance (MDR) due to overexpression of P-glycoprotein (P-gp) is a major obstacle that hinders the treatment of hepatocellular carcinoma (HCC). It has been shown that miR-375 inhibits P-gp expression via inhibition of astrocyte elevated gene-1 (AEG-1) expression in HCC, and induces apoptosis in HCC cells by targeting AEG-1 and YAP1. In this study, we prepared lipid-coated hollow mesoporous silica nanoparticles (LH) containing doxorubicin hydrochloride (DOX) and miR-375 (LHD/miR-375) to deliver the two agents into MDR HCC cells in vitro and in vivo. We found that LHD/miR-375 overcame drug efflux and delivered miR-375 and DOX into MDR HepG2/ADR cells or HCC tissues. MiR-375 delivered by LHD/miR-375 was taken up through phagocytosis and clathrin- and caveolae-mediated endocytosis. Following release from late endosomes, it repressed the expression of P-gp in HepG2/ADR cells. The synergistic effects of miR-375 and hollow mesoporous silica nanoparticles (HMSN) resulted in a profound increase in the uptake of DOX by the HCC cells and prevented HCC cell growth. Enhanced antitumor effects of LHD/miR-375 were also validated in HCC xenografts and primary tumors; however, no significant toxicity was observed. Mechanistic studies also revealed that miR-375 and DOX exerted a synergistic antitumor effect by promoting apoptosis. Our study illustrates that delivery of miR-375 using HMSN is a feasible approach to circumvent MDR in the management of HCC. It, therefore, merits further development for potential clinical application.

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery.

          In the past decade, mesoporous silica nanoparticles (MSNs) have attracted more and more attention for their potential biomedical applications. With their tailored mesoporous structure and high surface area, MSNs as drug delivery systems (DDSs) show significant advantages over traditional drug nanocarriers. In this review, we overview the recent progress in the synthesis of MSNs for drug delivery applications. First, we provide an overview of synthesis strategies for fabricating ordered MSNs and hollow/rattle-type MSNs. Then, the in vitro and in vivo biocompatibility and biotranslocation of MSNs are discussed in relation to their chemophysical properties including particle size, surface properties, shape, and structure. The review also highlights the significant achievements in drug delivery using mesoporous silica nanoparticles and their multifunctional counterparts as drug carriers. In particular, the biological barriers for nano-based targeted cancer therapy and MSN-based targeting strategies are discussed. We conclude with our personal perspectives on the directions in which future work in this field might be focused. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin.

            Many chemotherapy regiments are successfully used to treat breast cancer; however, often breast cancer cells develop drug resistance that usually leads to a relapse and worsening of prognosis. We have shown recently that epigenetic changes such as DNA methylation and histone modifications play an important role in breast cancer cell resistance to chemotherapeutic agents. Another mechanism of gene expression control is mediated via the function of small regulatory RNA, particularly microRNA (miRNA); its role in cancer cell drug resistance still remains unexplored. In the present study, we investigated the role of miRNA in the resistance of human MCF-7 breast adenocarcinoma cells to doxorubicin (DOX). Here, we for the first time show that DOX-resistant MCF-7 cells (MCF-7/DOX) exhibit a considerable dysregulation of the miRNAome profile and altered expression of miRNA processing enzymes Dicer and Argonaute 2. The mechanistic link of miRNAome deregulation and the multidrug-resistant phenotype of MCF-7/DOX cells was evidenced by a remarkable correlation between specific miRNA expression and corresponding changes in protein levels of their targets, specifically those ones that have a documented role in cancer drug resistance. Furthermore, we show that microRNA-451 regulates the expression of multidrug resistance 1 gene. More importantly, transfection of the MCF-7/DOX-resistant cells with microRNA-451 resulted in the increased sensitivity of cells to DOX, indicating that correction of altered expression of miRNA may have significant implications for therapeutic strategies aiming to overcome cancer cell resistance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MicroRNA-375 targets AEG-1 in hepatocellular carcinoma and suppresses liver cancer cell growth in vitro and in vivo.

              MicroRNAs (miRNAs) are believed to have fundamental roles in tumorigenesis and have great potential for the diagnosis and treatment of cancer. However, the roles of miRNAs in hepatocellular carcinogenesis are still not fully elucidated. We investigated the aberrantly expressed miRNAs involved in hepatoma by comparison of miRNA expression profiles in cancerous hepatocytes with normal primary human hepatocytes, and 37 dysregulated miRNAs were screened out by twofold change with a significant difference (P<0.05). Clustering analysis based on 13 miRNAs with changes over 15-folds showed that the miRNA expression patterns between the cancerous and normal hepatocytes were clearly different. Among the 13 miRNAs, we found that miR-375 was significantly downregulated in hepatocellular carcinoma (HCC) tissues and cell lines. Overexpression of miR-375 in liver cancer cells decreased cell proliferation, clonogenicity, migration/invasion and also induced G1 arrest and apoptosis. To unveil the molecular mechanism of miR-375-mediated phenotype in hepatoma cells described above, we examined the putative targets using bioinformatics tools and found that astrocyte elevated gene-1 (AEG-1) was a potential target of miR-375. Then we demonstrated that miR-375 bound directly to the 3'-untranslated region of AEG-1 and inhibited the expression of AEG-1. TaqMan quantitative reverse transcriptase-PCR and western blot analysis showed that miR-375 expression was inversely correlated with AEG-1 expression in HCC tissues. Knockdown of AEG-1 by RNAi in HCC cells, similar to miR-375 overexpression, suppressed tumor properties. Ectopic expression of AEG-1, conversely, could partially reverse the antitumor effects of miR-375. In a mouse model, therapeutic administration of cholesterol-conjugated 2'-O-methyl-modified miR-375 mimics (Chol-miR-375) could significantly suppress the growth of hepatoma xenografts in nude mice. In conclusion, our findings indicate that miR-375 targets AEG-1 in HCC and suppresses liver cancer cell growth in vitro and in vivo, and highlight the therapeutic potential of miR-375 in HCC treatment.
                Bookmark

                Author and article information

                Journal
                Int J Nanomedicine
                Int J Nanomedicine
                International Journal of Nanomedicine
                International Journal of Nanomedicine
                Dove Medical Press
                1176-9114
                1178-2013
                2017
                24 July 2017
                : 12
                : 5271-5287
                Affiliations
                [1 ]School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology
                [2 ]Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
                [3 ]Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
                Author notes
                Correspondence: Chuanrui Xu; Lei Li, School of Pharmacy, Tongji Medical College, Hangkong Road 13, Wuhan, Hubei 430030, China, Tel +86 27 8369 2745, Email xcr@ 123456hust.edu.cn ; leileilesure@ 123456163.com
                Article
                ijn-12-5271
                10.2147/IJN.S135306
                5533569
                28769563
                0abc61ef-eeff-40dd-a93d-65021c24870d
                © 2017 Xue et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Molecular medicine
                hollow mesoporous silica nanoparticle,doxorubicin,mir-375,aeg-1,hepatocel-lular carcinoma,multidrug resistance

                Comments

                Comment on this article