7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bispecific Antibodies and Antibody–Drug Conjugates for Cancer Therapy: Technological Considerations

      review-article
      Biomolecules
      MDPI
      bispecific antibody, antibody–drug conjugate, cancer therapy

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The ability of monoclonal antibodies to specifically bind a target antigen and neutralize or stimulate its activity is the basis for the rapid growth and development of the therapeutic antibody field. In recent years, traditional immunoglobulin antibodies have been further engineered for better efficacy and safety, and technological developments in the field enabled the design and production of engineered antibodies capable of mediating therapeutic functions hitherto unattainable by conventional antibody formats. Representative of this newer generation of therapeutic antibody formats are bispecific antibodies and antibody–drug conjugates, each with several approved drugs and dozens more in the clinical development phase. In this review, the technological principles and challenges of bispecific antibodies and antibody–drug conjugates are discussed, with emphasis on clinically validated formats but also including recent developments in the fields, many of which are expected to significantly augment the current therapeutic arsenal against cancer and other diseases with unmet medical needs.

          Related collections

          Most cited references132

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Pivotal Trial of Enfortumab Vedotin in Urothelial Carcinoma After Platinum and Anti-Programmed Death 1/Programmed Death Ligand 1 Therapy

          PURPOSE Locally advanced or metastatic urothelial carcinoma is an incurable disease with limited treatment options, especially for patients who were previously treated with platinum and anti–programmed death 1 or anti–programmed death ligand 1 (PD-1/L1) therapy. Enfortumab vedotin is an antibody–drug conjugate that targets Nectin-4, which is highly expressed in urothelial carcinoma. METHODS EV-201 is a global, phase II, single-arm study of enfortumab vedotin 1.25 mg/kg (intravenously on days 1, 8, and 15 of every 28-day cycle) in patients with locally advanced or metastatic urothelial carcinoma who were previously treated with platinum chemotherapy and anti–PD-1/L1 therapy. The primary end point was objective response rate per Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1 by blinded independent central review. Key secondary end points were duration of response, progression-free survival, overall survival, safety, and tolerability. RESULTS Enfortumab vedotin was administered to 125 patients with metastatic urothelial carcinoma. Median follow-up was 10.2 months (range, 0.5 to 16.5 months). Confirmed objective response rate was 44% (95% CI, 35.1% to 53.2%), including 12% complete responses. Similar responses were observed in prespecified subgroups, such as those patients with liver metastases and those with no response to prior anti–PD-1/L1 therapy. Median duration of response was 7.6 months (range, 0.95 to 11.30+ months). The most common treatment-related adverse events were fatigue (50%), any peripheral neuropathy (50%), alopecia (49%), any rash (48%), decreased appetite (44%), and dysgeusia (40%). No single treatment-related adverse events grade 3 or greater occurred in 10% or more of patients. CONCLUSION Enfortumab vedotin demonstrated a clinically meaningful response rate with a manageable and tolerable safety profile in patients with locally advanced or metastatic urothelial carcinoma who were previously treated with platinum and anti–PD-1/L1 therapies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Enfortumab Vedotin Antibody-Drug Conjugate Targeting Nectin-4 Is a Highly Potent Therapeutic Agent in Multiple Preclinical Cancer Models.

            The identification of optimal target antigens on tumor cells is central to the advancement of new antibody-based cancer therapies. We performed suppression subtractive hybridization and identified nectin-4 (PVRL4), a type I transmembrane protein and member of a family of related immunoglobulin-like adhesion molecules, as a potential target in epithelial cancers. We conducted immunohistochemical analysis of 2,394 patient specimens from bladder, breast, lung, pancreatic, ovarian, head/neck, and esophageal tumors and found that 69% of all specimens stained positive for nectin-4. Moderate to strong staining was especially observed in 60% of bladder and 53% of breast tumor specimens, whereas the expression of nectin-4 in normal tissue was more limited. We generated a novel antibody-drug conjugate (ADC) enfortumab vedotin comprising the human anti-nectin-4 antibody conjugated to the highly potent microtubule-disrupting agent MMAE. Hybridoma (AGS-22M6E) and CHO (ASG-22CE) versions of enfortumab vedotin (also known as ASG-22ME) ADC were able to bind to cell surface-expressed nectin-4 with high affinity and induced cell death in vitro in a dose-dependent manner. Treatment of mouse xenograft models of human breast, bladder, pancreatic, and lung cancers with enfortumab vedotin significantly inhibited the growth of all four tumor types and resulted in tumor regression of breast and bladder xenografts. Overall, these findings validate nectin-4 as an attractive therapeutic target in multiple solid tumors and support further clinical development, investigation, and application of nectin-4-targeting ADCs. Cancer Res; 76(10); 3003-13. ©2016 AACR.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Immunopharmacologic response of patients with B-lineage acute lymphoblastic leukemia to continuous infusion of T cell-engaging CD19/CD3-bispecific BiTE antibody blinatumomab.

              T cell-engaging CD19/CD3-bispecific BiTE Ab blinatumomab has shown an 80% complete molecular response rate and prolonged leukemia-free survival in patients with minimal residual B-lineage acute lymphoblastic leukemia (MRD(+) B-ALL). Here, we report that lymphocytes in all patients of a phase 2 study responded to continuous infusion of blinatumomab in a strikingly similar fashion. After start of infusion, B-cell counts dropped to < 1 B cell/μL within an average of 2 days and remained essentially undetectable for the entire treatment period. By contrast, T-cell counts in all patients declined to a nadir within < 1 day and recovered to baseline within a few days. T cells then expanded and on average more than doubled over baseline within 2-3 weeks under continued infusion of blinatumomab. A significant percentage of reappearing CD8(+) and CD4(+) T cells newly expressed activation marker CD69. Shortly after start of infusion, a transient release of cytokines dominated by IL-10, IL-6, and IFN-γ was observed, which no longer occurred on start of a second treatment cycle. The response of lymphocytes in leukemic patients to continuous infusion of blinatumomab helps to better understand the mode of action of this and other globally T cell-engaging Abs. The trial is registered with www.clinicaltrials.gov identifier NCT00560794.
                Bookmark

                Author and article information

                Journal
                Biomolecules
                Biomolecules
                biomolecules
                Biomolecules
                MDPI
                2218-273X
                26 February 2020
                March 2020
                : 10
                : 3
                : 360
                Affiliations
                Department of Life Science, Ewha Womans University, Seoul 03760, Korea; hshim@ 123456ewha.ac.kr
                Article
                biomolecules-10-00360
                10.3390/biom10030360
                7175114
                32111076
                0af59185-8f20-4c52-b4e9-e444ca7d9f2a
                © 2020 by the author.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 20 January 2020
                : 23 February 2020
                Categories
                Review

                bispecific antibody,antibody–drug conjugate,cancer therapy

                Comments

                Comment on this article