27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The Emergence of Global Systemic Risk

      , , , ,
      Annual Review of Sociology
      Annual Reviews

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references83

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Emergence of scaling in random networks

          Systems as diverse as genetic networks or the world wide web are best described as networks with complex topology. A common property of many large networks is that the vertex connectivities follow a scale-free power-law distribution. This feature is found to be a consequence of the two generic mechanisms that networks expand continuously by the addition of new vertices, and new vertices attach preferentially to already well connected sites. A model based on these two ingredients reproduces the observed stationary scale-free distributions, indicating that the development of large networks is governed by robust self-organizing phenomena that go beyond the particulars of the individual systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Matthew Effect in Science: The reward and communication systems of science are considered.

            R K Merton (1968)
            This account of the Matthew effect is another small exercise in the psychosociological analysis of the workings of science as a social institution. The initial problem is transformed by a shift in theoretical perspective. As originally identified, the Matthew effect was construed in terms of enhancement of the position of already eminent scientists who are given disproportionate credit in cases of collaboration or of independent multiple discoveries. Its significance was thus confined to its implications for the reward system of science. By shifting the angle of vision, we note other possible kinds of consequences, this time for the communication system of science. The Matthew effect may serve to heighten the visibility of contributions to science by scientists of acknowledged standing and to reduce the visibility of contributions by authors who are less well known. We examine the psychosocial conditions and mechanisms underlying this effect and find a correlation between the redundancy function of multiple discoveries and the focalizing function of eminent men of science-a function which is reinforced by the great value these men place upon finding basic problems and by their self-assurance. This self-assurance, which is partly inherent, partly the result of experiences and associations in creative scientific environments, and partly a result of later social validation of their position, encourages them to search out risky but important problems and to highlight the results of their inquiry. A macrosocial version of the Matthew principle is apparently involved in those processes of social selection that currently lead to the concentration of scientific resources and talent (50).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Error and attack tolerance of complex networks

              Many complex systems, such as communication networks, display a surprising degree of robustness: while key components regularly malfunction, local failures rarely lead to the loss of the global information-carrying ability of the network. The stability of these complex systems is often attributed to the redundant wiring of the functional web defined by the systems' components. In this paper we demonstrate that error tolerance is not shared by all redundant systems, but it is displayed only by a class of inhomogeneously wired networks, called scale-free networks. We find that scale-free networks, describing a number of systems, such as the World Wide Web, Internet, social networks or a cell, display an unexpected degree of robustness, the ability of their nodes to communicate being unaffected by even unrealistically high failure rates. However, error tolerance comes at a high price: these networks are extremely vulnerable to attacks, i.e. to the selection and removal of a few nodes that play the most important role in assuring the network's connectivity.
                Bookmark

                Author and article information

                Journal
                Annual Review of Sociology
                Annu. Rev. Sociol.
                Annual Reviews
                0360-0572
                1545-2115
                August 14 2015
                August 14 2015
                : 41
                : 1
                : 65-85
                Article
                10.1146/annurev-soc-073014-112317
                0b664082-1ffb-4873-a9e3-35b4489d8df9
                © 2015
                History

                Comments

                Comment on this article