6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Platelet HIF-2α promotes thrombogenicity through PAI-1 synthesis and extracellular vesicle release

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Oxygen-compromised environments, such as high altitude, are associated with platelet hyperactivity. Platelets confined within the relatively impervious core of an aggregate/thrombus have restricted access to oxygen, yet they continue to perform energy-intensive procoagulant activities that sustain the thrombus. Studying platelet signaling under hypoxia is, therefore, critical to our understanding of the mechanistic basis of thrombus stability. We report here that hypoxia-inducible factor (HIF)-2α is translated from pre-existing mRNA and stabilized against proteolytic degradation in enucleate platelets exposed to hypoxia. Hypoxic stress, too, stimulates platelets to synthesize plasminogen-activator inhibitor-1 (PAI-1) and shed extracellular vesicles, both of which potentially contribute to the prothrombotic phenotype associated with hypoxia. Stabilization of HIF-α by administering hypoxia-mimetics to mice accelerates thrombus formation in mesenteric arterioles. In agreement, platelets from patients with chronic obstructive pulmonary disease and high altitude residents exhibiting thrombogenic attributes have abundant expression of HIF-2α and PAI- 1. Thus, targeting platelet hypoxia signaling could be an effective anti-thrombotic strategy.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Role of hypoxia-inducible factor (HIF)-1alpha versus HIF-2alpha in the regulation of HIF target genes in response to hypoxia, insulin-like growth factor-I, or loss of von Hippel-Lindau function: implications for targeting the HIF pathway.

          Overexpression of hypoxia-inducible factors (HIF), HIF-1alpha and HIF-2alpha, leads to the up-regulation of genes involved in proliferation, angiogenesis, and glucose metabolism and is associated with tumor progression in several cancers. However, the contribution of HIF-1alpha versus HIF-2alpha to vascular endothelial growth factor (VEGF) expression and other HIF-regulated target genes under different conditions is unclear. To address this, we used small interfering RNA (siRNA) techniques to knockdown HIF-1alpha and/or HIF-2alpha expression in response to hypoxia, insulin-like growth factor (IGF)-I, or renal carcinoma cells expressing constitutively high basal levels of HIF-1alpha and/or HIF-2alpha due to loss of von Hippel-Lindau (VHL) function. We found that HIF-1alpha primarily regulates transcriptional activation of VEGF in response to hypoxia and IGF-I compared with HIF-2alpha in MCF-7 cells. We also observed a reciprocal relationship between HIF-1alpha and HIF-2alpha expression in hypoxia in these cells: HIF-2alpha siRNA enhanced HIF-1alpha-mediated VEGF expression in MCF-7 cells in response to hypoxia, which could be completely blocked by cotransfection with HIF-1alpha siRNA. In contrast, in renal carcinoma cells that constitutively express HIF-1alpha and HIF-2alpha due to loss of VHL function, we found that high basal VEGF, glucose transporter-1, urokinase-type plasminogen activator receptor, and plasminogen activator inhibitor-1 expression was predominantly dependent on HIF-2alpha. Finally, we showed that a newly identified small-molecule inhibitor of HIF-1, NSC-134754, is also able to significantly decrease HIF-2alpha protein expression and HIF-2alpha-regulated VEGF levels in renal carcinoma cells. Our data have important implications for how we target the HIF pathway therapeutically.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chaperone-mediated autophagy targets hypoxia-inducible factor-1α (HIF-1α) for lysosomal degradation.

            Hypoxia-inducible factor-1 (HIF-1) is a heterodimeric transcription factor that mediates adaptive responses to hypoxia. We demonstrate that lysosomal degradation of the HIF-1α subunit by chaperone-mediated autophagy (CMA) is a major regulator of HIF-1 activity. Pharmacological inhibitors of lysosomal degradation, such as bafilomycin and chloroquine, increased HIF-1α levels and HIF-1 activity, whereas activators of chaperone-mediated autophagy, including 6-aminonicotinamide and nutrient starvation, decreased HIF-1α levels and HIF-1 activity. In contrast, macroautophagy inhibitors did not increase HIF-1 activity. Transcription factor EB, a master regulator of lysosomal biogenesis, also negatively regulated HIF-1 activity. HIF-1α interacts with HSC70 and LAMP2A, which are core components of the CMA machinery. Overexpression of HSC70 or LAMP2A decreased HIF-1α protein levels, whereas knockdown had the opposite effect. Finally, hypoxia increased the transcription of genes involved in CMA and lysosomal biogenesis in cancer cells. Thus, pharmacological and genetic approaches identify CMA as a major regulator of HIF-1 activity and identify interplay between autophagy and the response to hypoxia.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Signal-dependent translation of a regulatory protein, Bcl-3, in activated human platelets.

              Circulating human platelets lack nuclei, cannot synthesize mRNA, and are considered incapable of regulated protein synthesis. We found that thrombin-activated, but not resting, platelets synthesize Bcl-3, a member of the IkappaB-alpha family of regulatory proteins. The time- and concentration-dependent generation of Bcl-3 in platelets signaled by thrombin was blocked by translational inhibitors, by rapamycin, and by inhibitors of phosphatidylinositol-3-kinase, indicating that it occurs via a specialized translational control pathway that involves phosphorylation of the inhibitory protein 4E-BP1. After its synthesis in activated platelets Bcl-3 binds to the SH3 domain of Fyn (p59(fyn)), a Src-related tyrosine kinase. This, along with its expression in anucleate cells, suggests that Bcl-3 has previously unrecognized functions aside from modulation of transcription. We also demonstrate that platelets synthesize and secrete numerous proteins besides Bcl-3 after they adhere to fibrinogen, which mediates adhesion and outside-in signaling of these cells by engagement of alphaIIb/beta3 integrin. Taken together, these data demonstrate that regulated synthesis of proteins is a signal-dependent activation response of human platelets.
                Bookmark

                Author and article information

                Journal
                Haematologica
                Haematologica
                haematol
                Haematologica
                Haematologica
                Ferrata Storti Foundation
                0390-6078
                1592-8721
                December 2019
                19 April 2019
                : 104
                : 12
                : 2482-2492
                Affiliations
                [1 ]Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
                [2 ]Department of Biochemistry, Birat Medical College & Teaching Hospital, Biratnagar, Nepal
                [3 ]Department of Tuberculosis & Respiratory Diseases, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
                Author notes
                Correspondence: DEBABRATA DASH ddash.biochem@ 123456gmail.com
                Article
                1042482
                10.3324/haematol.2019.217463
                6959171
                31004026
                0b685dfb-ac0f-4d1d-8bfb-3a5104278f3d
                Copyright© 2019 Ferrata Storti Foundation

                Material published in Haematologica is covered by copyright. All rights are reserved to the Ferrata Storti Foundation. Use of published material is allowed under the following terms and conditions:

                https://creativecommons.org/licenses/by-nc/4.0/legalcode. Copies of published material are allowed for personal or internal use. Sharing published material for non-commercial purposes is subject to the following conditions:

                https://creativecommons.org/licenses/by-nc/4.0/legalcode, sect. 3. Reproducing and sharing published material for commercial purposes is not allowed without permission in writing from the publisher.

                History
                : 24 January 2019
                : 17 April 2019
                Categories
                Article
                Platelet Biology & its Disorders

                Comments

                Comment on this article