22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Cachexia and protein-energy wasting in children with chronic kidney disease

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Children with chronic kidney disease (CKD) are at risk for “cachexia” or “protein-energy wasting” (PEW). These terms describe a pathophysiologic process resulting in the loss of muscle, with or without loss of fat, and involving maladaptive responses, including anorexia and elevated metabolic rate. PEW has been defined specifically in relation to CKD. We review the diagnostic criteria for cachexia and PEW in CKD and consider the limitations and applicability of these criteria to children with CKD. In addition, we present an overview of the manifestations and mechanisms of cachexia and PEW. A host of pathogenetic factors are considered, including systemic inflammation, endocrine perturbations, and abnormal neuropeptide signaling, as well as poor nutritional intake. Mortality risk, which is 100- to 200-fold higher in patients with end-stage renal disease than in the general population, is strongly correlated with the components of cachexia/PEW. Further research into the causes and consequences of wasting and growth retardation is needed in order to improve the survival and quality of life for children with CKD.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: found
          • Article: not found

          A malnutrition-inflammation score is correlated with morbidity and mortality in maintenance hemodialysis patients.

          Malnutrition inflammation complex syndrome (MICS) occurs commonly in maintenance hemodialysis (MHD) patients and may correlate with increased morbidity and mortality. An optimal, comprehensive, quantitative system that assesses MICS could be a useful measure of clinical status and may be a predictor of outcome in MHD patients. We therefore attempted to develop and validate such an instrument, comparing it with conventional measures of nutrition and inflammation, as well as prospective hospitalization and mortality. Using components of the conventional Subjective Global Assessment (SGA), a semiquantitative scale with three severity levels, the Dialysis Malnutrition Score (DMS), a fully quantitative scoring system consisting of 7 SGA components, with total score ranging between 7 (normal) and 35 (severely malnourished), was recently developed. To improve the DMS, we added three new elements to the 7 DMS components: body mass index, serum albumin level, and total iron-binding capacity to represent serum transferrin level. This new comprehensive Malnutrition-Inflammation Score (MIS) has 10 components, each with four levels of severity, from 0 (normal) to 3 (very severe). The sum of all 10 MIS components ranges from 0 to 30, denoting increasing degree of severity. These scores were compared with anthropometric measurements, near-infrared-measured body fat percentage, laboratory measures that included serum C-reactive protein (CRP), and 12-month prospective hospitalization and mortality rates. Eighty-three outpatients (44 men, 39 women; age, 59 +/- 15 years) on MHD therapy for at least 3 months (43 +/- 33 months) were evaluated at the beginning of this study and followed up for 1 year. The SGA, DMS, and MIS were assessed simultaneously on all patients by a trained physician. Case-mix-adjusted correlation coefficients for the MIS were significant for hospitalization days (r = 0.45; P < 0.001) and frequency of hospitalization (r = 0.46; P < 0.001). Compared with the SGA and DMS, most pertinent correlation coefficients were stronger with the MIS. The MIS, but not the SGA or DMS, correlated significantly with creatinine level, hematocrit, and CRP level. During the 12-month follow-up, 9 patients died and 6 patients left the cohort. The Cox proportional hazard-calculated relative risk for death for each 10-unit increase in the MIS was 10.43 (95% confidence interval, 2.28 to 47.64; P = 0.002). The MIS was superior to its components or different subversions for predicting mortality. The MIS appears to be a comprehensive scoring system with significant associations with prospective hospitalization and mortality, as well as measures of nutrition, inflammation, and anemia in MHD patients. The MIS may be superior to the conventional SGA and the DMS, as well as to individual laboratory values, as a predictor of dialysis outcome and an indicator of MICS.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Malnutrition-inflammation complex syndrome in dialysis patients: causes and consequences.

            Protein-energy malnutrition (PEM) and inflammation are common and usually concurrent in maintenance dialysis patients. Many factors that appear to lead to these 2 conditions overlap, as do assessment tools and such criteria for detecting them as hypoalbuminemia. Both these conditions are related to poor dialysis outcome. Low appetite and a hypercatabolic state are among common features. PEM in dialysis patients has been suggested to be secondary to inflammation; however, the evidence is not conclusive, and an equicausal status or even opposite causal direction is possible. Hence, malnutrition-inflammation complex syndrome (MICS) is an appropriate term. Possible causes of MICS include comorbid illnesses, oxidative and carbonyl stress, nutrient loss through dialysis, anorexia and low nutrient intake, uremic toxins, decreased clearance of inflammatory cytokines, volume overload, and dialysis-related factors. MICS is believed to be the main cause of erythropoietin hyporesponsiveness, high rate of cardiovascular atherosclerotic disease, decreased quality of life, and increased mortality and hospitalization in dialysis patients. Because MICS leads to a low body mass index, hypocholesterolemia, hypocreatininemia, and hypohomocysteinemia, a "reverse epidemiology" of cardiovascular risks can occur in dialysis patients. Therefore, obesity, hypercholesterolemia, and increased blood levels of creatinine and homocysteine appear to be protective and paradoxically associated with a better outcome. There is no consensus about how to determine the degree of severity of MICS or how to manage it. Several diagnostic tools and treatment modalities are discussed. Successful management of MICS may ameliorate the cardiovascular epidemic and poor outcome in dialysis patients. Clinical trials focusing on MICS and its possible causes and consequences are urgently required to improve poor clinical outcome in dialysis patients.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              NF-kappaB-induced loss of MyoD messenger RNA: possible role in muscle decay and cachexia.

              MyoD regulates skeletal muscle differentiation (SMD) and is essential for repair of damaged tissue. The transcription factor nuclear factor kappa B (NF-kappaB) is activated by the cytokine tumor necrosis factor (TNF), a mediator of skeletal muscle wasting in cachexia. Here, the role of NF-kappaB in cytokine-induced muscle degeneration was explored. In differentiating C2C12 myocytes, TNF-induced activation of NF-kappaB inhibited SMD by suppressing MyoD mRNA at the posttranscriptional level. In contrast, in differentiated myotubes, TNF plus interferon-gamma (IFN-gamma) signaling was required for NF-kappaB-dependent down-regulation of MyoD and dysfunction of skeletal myofibers. MyoD mRNA was also down-regulated by TNF and IFN-gamma expression in mouse muscle in vivo. These data elucidate a possible mechanism that may underlie the skeletal muscle decay in cachexia.
                Bookmark

                Author and article information

                Contributors
                romak@ucsd.edu
                Journal
                Pediatr Nephrol
                Pediatric Nephrology (Berlin, Germany)
                Springer-Verlag (Berlin/Heidelberg )
                0931-041X
                1432-198X
                6 February 2011
                6 February 2011
                February 2012
                : 27
                : 2
                : 173-181
                Affiliations
                [1 ]Division of Nephrology, Department of Pediatrics, Rady Children’s Hospital, University of California San Diego, San Diego, CA USA
                [2 ]Children’s Hospital, Zhejiang University, Hangzhou, China
                [3 ]Children’s Hospital, Fudan University, Shanghai, China
                [4 ]Division of Nephrology, Department of Pediatrics, Montreal Children’s Hospital, McGill University Health Centre, Montreal, Quebec Canada
                [5 ]University of California San Diego, 9500 Gilman Drive, MCO634, La Jolla, CA 92093-0634 USA
                Article
                1765
                10.1007/s00467-011-1765-5
                3249542
                21298504
                0b720b9c-52ff-4305-88b2-29539397018c
                © The Author(s) 2011
                History
                : 10 June 2010
                : 13 December 2010
                : 16 December 2010
                Categories
                Review
                Custom metadata
                © IPNA 2012

                Nephrology
                growth failure,protein energy wasting,pediatric,renal failure,cachexia
                Nephrology
                growth failure, protein energy wasting, pediatric, renal failure, cachexia

                Comments

                Comment on this article