3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nrf2 Activation Mediates Antiallodynic Effect of Electroacupuncture on a Rat Model of Complex Regional Pain Syndrome Type-I through Reducing Local Oxidative Stress and Inflammation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Complex regional pain syndrome type-I (CRPS-I) represents a type of neurovascular condition featured by severe pain in affected extremities. Few treatments have proven effective for CRPS-I. Electroacupuncture (EA) is an effective therapy for pain relief. We explored the mechanism through which EA ameliorates pain in a rat CRPS-I model. The chronic postischemic pain (CPIP) model was established using Sprague-Dawley rats to mimic CRPS-I. We found that oxidative stress-related biological process was among the predominant biological processes in affected hindpaw of CPIP rats. Oxidative stress occurred primarily in local hindpaw but not in the spinal cord or serum of model rats. Antioxidant N-acetyl cysteine (NAC) attenuated mechanical allodynia and spinal glia overactivation in CPIP model rats, whereas locally increasing oxidative stress is sufficient to induce chronic pain and spinal glia overactivation in naive rats. EA exerted remarkable antiallodynia on CPIP rats by reducing local oxidative stress via enhancing nuclear factor erythroid 2-related factor 2 (Nrf2) expression. Pharmacological blocking Nrf2 abolished antioxidative and antiallodynic effects of EA. EA reduced spinal glia overactivation, attenuated the upregulation of inflammatory cytokines, reduced the enhanced TRPA1 channel activity in dorsal root ganglion neurons innervating the hindpaws, and improved blood flow dysfunction in hindpaws of CPIP rats, all of which were mimicked by NAC treatment. Thus, we identified local oxidative injury as an important contributor to pathogenesis of animal CRPS-I model. EA targets local oxidative injury by enhancing endogenous Nrf2-mediated antioxidative mechanism to relieve pain and inflammation. Our study indicates EA can be an alternative option for CRPS-I management.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: found
          • Article: not found

          Quantitative assessment of tactile allodynia in the rat paw

          We applied and validated a quantitative allodynia assessment technique, using a recently developed rat surgical neuropathy model wherein nocifensive behaviors are evoked by light touch to the paw. Employing von Frey hairs from 0.41 to 15.1 g, we first characterized the percent response at each stimulus intensity. A smooth log-linear relationship was observed, with a median 50% threshold at 1.97 g (95% confidence limits, 1.12-3.57 g). Subsequently, we applied a paradigm using stimulus oscillation around the response threshold, which allowed more rapid, efficient measurements. Median 50% threshold by this up-down method was 2.4 g (1.81-2.76). Correlation coefficient between the two methods was 0.91. In neuropathic rats, good intra- and inter-observer reproducibility was found for the up-down paradigm; some variability was seen in normal rats, attributable to extensive testing. Thresholds in a sizable group of neuropathic rats showed insignificant variability over 20 days. After 50 days, 61% still met strict neuropathy criteria, using survival analysis. Threshold measurement using the up-down paradigm, in combination with the neuropathic pain model, represents a powerful tool for analyzing the effects of manipulations of the neuropathic pain state.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Different immune cells mediate mechanical pain hypersensitivity in male and female mice.

            A large and rapidly increasing body of evidence indicates that microglia-to-neuron signaling is essential for chronic pain hypersensitivity. Using multiple approaches, we found that microglia are not required for mechanical pain hypersensitivity in female mice; female mice achieved similar levels of pain hypersensitivity using adaptive immune cells, likely T lymphocytes. This sexual dimorphism suggests that male mice cannot be used as proxies for females in pain research.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pain regulation by non-neuronal cells and inflammation

              Acute pain is protective and a cardinal feature of inflammation. Chronic pain after arthritis, nerve injury, cancer, and chemotherapy is associated with chronic neuroinflammation, a local inflammation in the peripheral or central nervous system. Accumulating evidence suggests that non-neuronal cells such as immune cells, glial cells, keratinocytes, cancer cells, and stem cells play active roles in the pathogenesis and resolution of pain. We review how non-neuronal cells interact with nociceptive neurons by secreting neuroactive signaling molecules that modulate pain. Recent studies also suggest that bacterial infections regulate pain through direct actions on sensory neurons, and specific receptors are present in nociceptors to detect danger signals from infections. We also discuss new therapeutic strategies to control neuroinflammation for the prevention and treatment of chronic pain.
                Bookmark

                Author and article information

                Contributors
                Journal
                Oxid Med Cell Longev
                Oxid Med Cell Longev
                OMCL
                Oxidative Medicine and Cellular Longevity
                Hindawi
                1942-0900
                1942-0994
                2022
                14 February 2022
                : 2022
                : 8035109
                Affiliations
                1Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
                2Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
                Author notes

                Academic Editor: Sachchida Nand Rai

                Author information
                https://orcid.org/0000-0002-9348-7991
                https://orcid.org/0000-0001-5655-6292
                https://orcid.org/0000-0002-6157-4054
                https://orcid.org/0000-0003-3267-8556
                https://orcid.org/0000-0002-6327-5613
                https://orcid.org/0000-0002-8801-8760
                https://orcid.org/0000-0002-3002-9897
                https://orcid.org/0000-0002-5159-6188
                https://orcid.org/0000-0002-0997-5379
                https://orcid.org/0000-0002-1637-1178
                https://orcid.org/0000-0003-4499-0352
                https://orcid.org/0000-0001-9870-4548
                Article
                10.1155/2022/8035109
                9054487
                35498128
                0bc0a10f-4abd-4642-b97a-0e54e3796bdf
                Copyright © 2022 Xiaojie Li et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 6 October 2021
                : 29 December 2021
                Funding
                Funded by: Zhejiang Chinese Medical University
                Award ID: KC201943
                Award ID: Q2019J01
                Award ID: 2021JKZDZC07
                Funded by: Zhejiang Provincial Natural Science Funds
                Award ID: LQ21H270004
                Funded by: Zhejiang Provincial Natural Science Funds for Distinguished Young Scholars
                Award ID: LR17H270001
                Funded by: National Natural Science Foundation of China
                Award ID: 81603676
                Award ID: 82105014
                Award ID: 81873365
                Categories
                Research Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article