0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Crystal Growth of Urea and Its Modulation by Additives as Analyzed by All-Atom MD Simulation and Solution Theory.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The crystal growth of urea was analyzed with all-atom molecular dynamics (MD) simulation for the (001) and (110) faces in contact with aqueous solutions. The local environment of a crystallizing molecule was treated in terms of the numbers of crystalline neighbors and the orientation relative to the crystal surface, and the molecular-level inhomogeneity of a growing surface was addressed by decomposing the overall rate of growth into a sum of the contributions conditioned by the local structure and orientation mode. The contrast of the growth mechanism between the (001) and (110) faces was then evidenced by the local contributions, and the roles of the outer layers of the crystal toward the liquid region were pointed out for (001). The effect of the additive species in the liquid on the crystal growth of urea was investigated with biuret, N,N-dimethylformamide (DMF), and acetone. The growth was observed to be suppressed more strongly in the order of biuret > DMF > acetone, and it was found that the ordering of suppression by the additive is common irrespective of the local environment of a crystallizing urea. This finding implies that the additive's effect on the crystal growth can be predicted by treating the flat surface, which is a convenient system for detailed analyses at atomic resolution. The correspondence to the free energy of adsorption of the additive was then examined for the additive-induced modulation of the growth rate. It was seen that the adsorption free energy correlates to the extent of modulation of the growth rate, and the interaction components that govern the adsorption propensity were identified.

          Related collections

          Author and article information

          Journal
          J Phys Chem B
          The journal of physical chemistry. B
          American Chemical Society (ACS)
          1520-5207
          1520-5207
          Jul 21 2022
          : 126
          : 28
          Affiliations
          [1 ] Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.
          Article
          10.1021/acs.jpcb.2c01764
          35792571
          0bda85fc-d800-4d01-a843-edb2e9e0b64c
          History

          Comments

          Comment on this article