7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Pt–FeOx/SiO2 catalysts prepared by galvanic displacement show high selectivity for cinnamyl alcohol production in the chemoselective hydrogenation of cinnamaldehyde

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Intimately interacting Pt–FeO x entities prepared via galvanic displacement are highly selective for the chemoselective hydrogenation of the CO bond in cinnamaldehyde.

          Abstract

          Galvanic displacement between SiO 2-supported Fe particles and Pt 2+ ions creates intimately interacting Pt–FeO x entities that are highly selective in catalyzing the hydrogenation of the carbonyl in cinnamaldehyde, offering a cinnamyl alcohol yield up to 95%.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Gold nanocages: synthesis, properties, and applications.

          Noble-metal nanocages comprise a novel class of nanostructures possessing hollow interiors and porous walls. They are prepared using a remarkably simple galvanic replacement reaction between solutions containing metal precursor salts and Ag nanostructures prepared through polyol reduction. The electrochemical potential difference between the two species drives the reaction, with the reduced metal depositing on the surface of the Ag nanostructure. In our most studied example, involving HAuCl(4) as the metal precursor, the resultant Au is deposited epitaxially on the surface of the Ag nanocubes, adopting their underlying cubic form. Concurrent with this deposition, the interior Ag is oxidized and removed, together with alloying and dealloying, to produce hollow and, eventually, porous structures that we commonly refer to as Au nanocages. This approach is versatile, with a wide range of morphologies (e.g., nanorings, prism-shaped nanoboxes, nanotubes, and multiple-walled nanoshells or nanotubes) available upon changing the shape of the initial Ag template. In addition to Au-based structures, switching the metal salt precursors to Na(2)PtCl(4) and Na(2)PdCl(4) allows for the preparation of Pt- and Pd-containing hollow nanostructures, respectively. We have found that changing the amount of metal precursor added to the suspension of Ag nanocubes is a simple means of tuning both the composition and the localized surface plasmon resonance (LSPR) of the metal nanocages. Using this approach, we are developing structures for biomedical and catalytic applications. Because discrete dipole approximations predicted that the Au nanocages would have large absorption cross-sections and because their LSPR can be tuned into the near-infrared (where the attenuation of light by blood and soft tissue is greatly reduced), they are attractive materials for biomedical applications in which the selective absorption of light at great depths is desirable. For example, we have explored their use as contrast enhancement agents for both optical coherence tomography and photoacoustic tomography, with improved performance observed in each case. Because the Au nanocages have large absorption cross-sections, they are also effective photothermal transducers; thus, they might provide a therapeutic effect through selective hyperthermia-induced killing of targeted cancer cells. Our studies in vitro have illustrated the feasibility of applying this technique as a less-invasive form of cancer treatment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Designing bimetallic catalysts for a green and sustainable future.

            This Critical Review provides an overview of the recent developments in the synthesis and characterization of bimetallic nanoparticles. Initially the review follows a materials science perspective on preparing bimetallic nanoparticles with designer morphologies, after which the emphasis shifts towards recent developments in using these bimetallic particles for catalysing either oxidation or reduction. In the final part of this review we present an overview of the utilization of bimetallic catalyst systems for the transformation of bio-renewable substrates and reactions related to the realization of a bio-refinery. Because of the sheer number of examples of transformations in this area, a few key examples, namely selective oxidation, hydrogenation/hydrogenolysis and reforming of biomass derived molecules, have been chosen for this review. Reports of bimetallic catalysts being used for the aforementioned transformations are critically analysed and the potential for exploiting such bimetallic catalysts have also been highlighted. A specific objective of this review article is to motivate researchers to synthesize some of the "designer" bimetallic catalysts with specific nanostructures, inspired from recent advances in the area of materials chemistry, and to utilize them for the transformation of biomass derived materials that are very complex and pose different challenges compared to those of simple organic molecules. We consider that supported bimetallic nanoparticles have an important role to play as catalysts in our quest for a more green and sustainable society.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Interface-confined ferrous centers for catalytic oxidation.

              Coordinatively unsaturated ferrous (CUF) sites confined in nanosized matrices are active centers in a wide range of enzyme and homogeneous catalytic reactions. Preparation of the analogous active sites at supported catalysts is of great importance in heterogeneous catalysis but remains a challenge. On the basis of surface science measurements and density functional calculations, we show that the interface confinement effect can be used to stabilize the CUF sites by taking advantage of strong adhesion between ferrous oxides and metal substrates. The interface-confined CUF sites together with the metal supports are active for dioxygen activation, producing reactive dissociated oxygen atoms. We show that the structural ensemble was highly efficient for carbon monoxide oxidation at low temperature under typical operating conditions of a proton-exchange membrane fuel cell.
                Bookmark

                Author and article information

                Journal
                CSTAGD
                Catalysis Science & Technology
                Catal. Sci. Technol.
                Royal Society of Chemistry (RSC)
                2044-4753
                2044-4761
                2016
                2016
                : 6
                : 19
                : 7033-7037
                Affiliations
                [1 ]Innovative Catalysis Program
                [2 ]Key Lab of Organic Optoelectronics and Molecular Engineering
                [3 ]Department of Chemistry
                [4 ]Tsinghua University
                [5 ]Beijing 100084
                Article
                10.1039/C6CY01340F
                0bfb417e-b65f-4d70-8d7b-aaa3b91ee635
                © 2016
                History

                Comments

                Comment on this article