3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      miR-27a-3p regulates the inhibitory influence of endothelin 3 on the tumorigenesis of papillary thyroid cancer cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Several studies on papillary thyroid cancer (PTC) have been performed. However, the effects of endothelin 3 (EDN3) and microRNA (miR)-27a-3p on PTC cells has yet to be investigated, to the best of the authors' knowledge. The present study aimed to explore the biological functions of EDN3 and miR-27a-3p in PTC cells. Bioinformatics analysis was conducted to identify possible key genes and miRs involved in PTC progression. Western blot analysis and reverse transcription-quantitative (RT-q) PCR were employed to confirm the key genes or miRs expressed in PTC cells. Cytological methods were used to detect cell viability, proliferation, apoptosis and migration and luciferase reporter assay was performed to confirm the relationship between END3 and miR-27a-3p. After analyzing the results of gene microarray analyses and RT-qPCR, EDN3 with low expression was identified as the key gene associated with PTC progression. It was also found that EDN3 overexpression in PTC cells impaired cell viability, proliferation and migration but promoted cell apoptosis. In addition, the findings revealed that miR-27a-3p could relieve the inhibitory influence of EDN3 on PTC cells by binding to EDN3 mRNA 3′ untranslated region (UTR), thereby suppressing EDN3 expression. Overall, the results of the present study demonstrated that by binding to EDN3 mRNA 3′UTR, miR-27a-3p could attenuate the inhibitory function of EDN3 in the tumorigenesis of PTC cells.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.

          The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data. Copyright 2001 Elsevier Science (USA).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Global cancer statistics, 2012.

            Cancer constitutes an enormous burden on society in more and less economically developed countries alike. The occurrence of cancer is increasing because of the growth and aging of the population, as well as an increasing prevalence of established risk factors such as smoking, overweight, physical inactivity, and changing reproductive patterns associated with urbanization and economic development. Based on GLOBOCAN estimates, about 14.1 million new cancer cases and 8.2 million deaths occurred in 2012 worldwide. Over the years, the burden has shifted to less developed countries, which currently account for about 57% of cases and 65% of cancer deaths worldwide. Lung cancer is the leading cause of cancer death among males in both more and less developed countries, and has surpassed breast cancer as the leading cause of cancer death among females in more developed countries; breast cancer remains the leading cause of cancer death among females in less developed countries. Other leading causes of cancer death in more developed countries include colorectal cancer among males and females and prostate cancer among males. In less developed countries, liver and stomach cancer among males and cervical cancer among females are also leading causes of cancer death. Although incidence rates for all cancers combined are nearly twice as high in more developed than in less developed countries in both males and females, mortality rates are only 8% to 15% higher in more developed countries. This disparity reflects regional differences in the mix of cancers, which is affected by risk factors and detection practices, and/or the availability of treatment. Risk factors associated with the leading causes of cancer death include tobacco use (lung, colorectal, stomach, and liver cancer), overweight/obesity and physical inactivity (breast and colorectal cancer), and infection (liver, stomach, and cervical cancer). A substantial portion of cancer cases and deaths could be prevented by broadly applying effective prevention measures, such as tobacco control, vaccination, and the use of early detection tests. © 2015 American Cancer Society.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cancer statistics, 2015.

              Each year the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States in the current year and compiles the most recent data on cancer incidence, mortality, and survival. Incidence data were collected by the National Cancer Institute (Surveillance, Epidemiology, and End Results [SEER] Program), the Centers for Disease Control and Prevention (National Program of Cancer Registries), and the North American Association of Central Cancer Registries. Mortality data were collected by the National Center for Health Statistics. A total of 1,658,370 new cancer cases and 589,430 cancer deaths are projected to occur in the United States in 2015. During the most recent 5 years for which there are data (2007-2011), delay-adjusted cancer incidence rates (13 oldest SEER registries) declined by 1.8% per year in men and were stable in women, while cancer death rates nationwide decreased by 1.8% per year in men and by 1.4% per year in women. The overall cancer death rate decreased from 215.1 (per 100,000 population) in 1991 to 168.7 in 2011, a total relative decline of 22%. However, the magnitude of the decline varied by state, and was generally lowest in the South (∼15%) and highest in the Northeast (≥20%). For example, there were declines of 25% to 30% in Maryland, New Jersey, Massachusetts, New York, and Delaware, which collectively averted 29,000 cancer deaths in 2011 as a result of this progress. Further gains can be accelerated by applying existing cancer control knowledge across all segments of the population. © 2015 American Cancer Society.
                Bookmark

                Author and article information

                Journal
                Mol Med Rep
                Mol Med Rep
                Molecular Medicine Reports
                D.A. Spandidos
                1791-2997
                1791-3004
                April 2021
                01 February 2021
                01 February 2021
                : 23
                : 4
                : 243
                Affiliations
                [1 ]Department of Otorhinolaryngology-Head and Neck Surgery, Wuhan Puren Hospital, Wuhan, Hubei 430081, P.R. China
                [2 ]Department of Otorhinolaryngology-Head and Neck Surgery, Wuhan University Renmin Hospital, Wuhan, Hubei 430060, P.R. China
                Author notes
                Correspondence to: Dr Qingquan Hua, Department of Otorhinolaryngology-Head and Neck Surgery, Wuhan University Renmin Hospital, 238 Jiefang Road, Wuhan, Hubei 430060, P.R. China, E-mail: hqq15072@ 123456163.com
                Article
                MMR-0-0-11882
                10.3892/mmr.2021.11882
                7893708
                33537832
                0c0b857a-ad5c-4513-b319-f30630a4614a
                Copyright: © Chen et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 29 April 2020
                : 04 January 2021
                Categories
                Articles

                mir-27a-3p,endothelin 3,papillary thyroid cancer
                mir-27a-3p, endothelin 3, papillary thyroid cancer

                Comments

                Comment on this article