22
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Vaginocervical Stimulation Releases Oxytocin within the Spinal Cord in Rats

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Vaginocervical stimulation (VS) significantly elevated the concentration of oxytocin (OT) in spinal cord superfusates of 8 intact urethane-anesthetized rats measured 10–15 min after VS (median [interquartile range]: 1.7 [1.00–3.37] pg/ml) compared to that measured 10–15 min before VS (1.1 [1.01–1.40] pg/ml). When VS was administered once (n = 8), it produced a 55% increase over baseline values; when administered a second time 45 min later (n = 6), it produced only a 22% increase over pre-VS values. The effects of estrogen on the VS-induced release of OT were then investigated using ovariectomized rats that were treated either with estradiol benzoate (EB; 10 µg/100 g bw) (n = 6) or with an oil vehicle (n = 6) subcutaneously for 3 days. The EB treatment significantly elevated the basal levels of OT released into spinal cord superfusates above vehicle control levels. Within 5–10 min after the onset of VS, OT concentrations in the superfusates were significantly higher in EB-treated than in vehicle-treated rats. The vehicle-treated rats did not show a significant elevation in OT concentration following VS. To rule out the possibility that the posterior pituitary gland was the source of this OT, the effect of hypophysectomy (HYPOX) was assessed on the VS-induced release of OT into spinal cord superfusates and plasma. The concentration of OT in spinal cord superfusates of both the HYPOX (n = 5) and intact rats (n = 6) increased significantly from 5.8 [4.4–6.5] pg/ml pre-VS to 7.9 [6.7–10.3] pg/ml immediately after VS, and from 4.4 [3.8–5] pg/ml pre-VS to 5.1 [4.6–5.7] pg/ml immediately after VS, respectively. There was no significant difference in baseline levels of OT in cerebrospinal fluid between the two groups. By contrast, plasma OT levels, while significantly elevated in response to VS from 3.42 [2.9–5.34] pg/ml baseline to 7.25 [5.33–15.77] pg/ml in the intact group, failed to respond significantly to VS in the HYPOX group (n = 5). The present findings provide evidence of a direct estrogen-dependent release of OT within the spinal cord in response to VS, presumably via descending oxytocinergic neurons.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Chronic catheterization of the spinal subarachnoid space.

          To administer drugs into the spinal subarachnoid space of unanesthetized and intact rats and rabbits, a procedure is described whereby a polyethylene catheter (PE-10) may be inserted through a puncture of the atlanto-occipital membrane and secured to the skull. Calibration experiments carried out with bromophenol blue dye, 3H-naloxone and 14C-urea revealed first, that there was little rostro-caudal diffusion of the injectate along the spinal axis and secondly, that even for compounds such as naloxone which can rapidly permeate neural tissues, the levels which do appear in the brain are small following the spinal subarachnoid administration of the drug. Control injections, administered either acutely or repeatedly over a prolonged period of time, had no detectable effect on the animal's behavior. These observations, as well as the lack of pathology in the spinal cords of rats having such catheters for periods of up to 4 months suggests that the implant is well tolerated.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The course of paraventricular hypothalamic efferents to autonomic structures in medulla and spinal cord.

            By application of the anterograde transport technique of Phaseolus vulgaris leuco-agglutinin the descending autonomic projection of the paraventricular hypothalamic nucleus was investigated. The Phaseolus lectin technique allowed the detection of the cells of origin in the paraventricular PVN, the precise position of two distinct descending axon pathways and the detailed morphology of terminal structures in midbrain, medulla oblongata and spinal cord.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Intracranial dialysis measurement of oxytocin, monoamine and uric acid release from the olfactory bulb and substantia nigra of sheep during parturition, suckling, separation from lambs and eating.

              Intracranial dialysis was used to measure the release of oxytocin (OXY), monoamines and their metabolites and uric acid (UA) from the substantia nigra (SN) and olfactory bulb (OB) of sheep during parturition, suckling, separation from lambs and eating. Results showed that OXY concentrations increased significantly during parturition, suckling and eating in the SN and during parturition and suckling in the OB. Concentrations of dopamine (DA) increased significantly in the SN during suckling and eating and in the OB during parturition and suckling. The dopamine metabolite, homovanillic acid, also increased significantly in the SN during parturition. Concentrations of the noradrenaline metabolite, 4-hydroxy-3-methoxyphenylethan-1,2-diol (MHPG) and the purine metabolite, UA, were significantly raised during parturition, suckling and separation from the lambs in the SN and increased UA levels were also found during eating. In a separate experiment it was confirmed that OXY was detectable in homogenates of both the SN and the OB. These results show that, in the sheep, OXY and DA release in the SN is associated with maternal and ingestive behaviour whereas similar release in the OB may only be related to maternal behaviour. Release of MHPG in the SN may be associated with maternal behaviour and/or stress.
                Bookmark

                Author and article information

                Journal
                NEN
                Neuroendocrinology
                10.1159/issn.0028-3835
                Neuroendocrinology
                S. Karger AG
                0028-3835
                1423-0194
                2002
                May 2002
                29 April 2002
                : 75
                : 5
                : 306-315
                Affiliations
                aDepartment of Psychology, Rutgers, The State University of New Jersey, Newark, N.J.; bYerkes Regional Primate Research Center, Emory University, Atlanta, Ga., and cNeurobehavioral Unit, VA Medical Center, East Orange, N.J., USA
                Article
                57340 Neuroendocrinology 2002;75:306–315
                10.1159/000057340
                12006784
                0c48e25c-f923-4577-964e-85890f883b0b
                © 2002 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                Page count
                Figures: 6, References: 53, Pages: 10
                Categories
                Neural Regulation of Reproductive Hormones

                Endocrinology & Diabetes,Neurology,Nutrition & Dietetics,Sexual medicine,Internal medicine,Pharmacology & Pharmaceutical medicine
                Corticotropin-releasing hormone,Adrenal steroids,Oxytocin,Spinal cord,Ovarian steroids,Paraventricular nucleus,Hypophysectomy,Vaginocervical stimulation

                Comments

                Comment on this article