13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genome-Wide Association Mapping of Starch Pasting Properties in Maize Using Single-Locus and Multi-Locus Models

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Maize starch plays a critical role in food processing and industrial application. The pasting properties, the most important starch characteristics, have enormous influence on fabrication property, flavor characteristics, storage, cooking, and baking. Understanding the genetic basis of starch pasting properties will be beneficial for manipulation of starch properties for a given purpose. Genome-wide association studies (GWAS) are becoming a powerful tool for dissecting the complex traits. Here, we carried out GWAS for seven pasting properties of maize starch with a panel of 230 inbred lines and 145,232 SNPs using one single-locus method, genome-wide efficient mixed model association (GEMMA), and three multi-locus methods, FASTmrEMMA, FarmCPU, and LASSO. We totally identified 60 quantitative trait nucleotides (QTNs) for starch pasting properties with these four GWAS methods. FASTmrEMMA detected the most QTNs (29), followed by FarmCPU (19) and LASSO (12), GEMMA detected the least QTNs (7). Of these QTNs, seven QTNs were identified by more than one method simultaneously. We further investigated locations of these significantly associated QTNs for possible candidate genes. These candidate genes and significant QTNs provide the guidance for further understanding of molecular mechanisms of starch pasting properties. We also compared the statistical powers and Type I errors of the four GWAS methods using Monte Carlo simulations. The results suggest that the multi-locus method is more powerful than the single-locus method and a combination of these multi-locus methods could help improve the detection power of GWAS.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Improving power and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology

          Genome-wide association studies (GWAS) have been widely used in genetic dissection of complex traits. However, common methods are all based on a fixed-SNP-effect mixed linear model (MLM) and single marker analysis, such as efficient mixed model analysis (EMMA). These methods require Bonferroni correction for multiple tests, which often is too conservative when the number of markers is extremely large. To address this concern, we proposed a random-SNP-effect MLM (RMLM) and a multi-locus RMLM (MRMLM) for GWAS. The RMLM simply treats the SNP-effect as random, but it allows a modified Bonferroni correction to be used to calculate the threshold p value for significance tests. The MRMLM is a multi-locus model including markers selected from the RMLM method with a less stringent selection criterion. Due to the multi-locus nature, no multiple test correction is needed. Simulation studies show that the MRMLM is more powerful in QTN detection and more accurate in QTN effect estimation than the RMLM, which in turn is more powerful and accurate than the EMMA. To demonstrate the new methods, we analyzed six flowering time related traits in Arabidopsis thaliana and detected more genes than previous reported using the EMMA. Therefore, the MRMLM provides an alternative for multi-locus GWAS.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Microprep protocol for extraction of DNA from tomato and other herbaceous plants

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Methodological implementation of mixed linear models in multi-locus genome-wide association studies

              Abstract The mixed linear model has been widely used in genome-wide association studies (GWAS), but its application to multi-locus GWAS analysis has not been explored and assessed. Here, we implemented a fast multi-locus random-SNP-effect EMMA (FASTmrEMMA) model for GWAS. The model is built on random single nucleotide polymorphism (SNP) effects and a new algorithm. This algorithm whitens the covariance matrix of the polygenic matrix K and environmental noise, and specifies the number of nonzero eigenvalues as one. The model first chooses all putative quantitative trait nucleotides (QTNs) with ≤ 0.005 P-values and then includes them in a multi-locus model for true QTN detection. Owing to the multi-locus feature, the Bonferroni correction is replaced by a less stringent selection criterion. Results from analyses of both simulated and real data showed that FASTmrEMMA is more powerful in QTN detection and model fit, has less bias in QTN effect estimation and requires a less running time than existing single- and multi-locus methods, such as empirical Bayes, settlement of mixed linear model under progressively exclusive relationship (SUPER), efficient mixed model association (EMMA), compressed MLM (CMLM) and enriched CMLM (ECMLM). FASTmrEMMA provides an alternative for multi-locus GWAS.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                05 September 2018
                2018
                : 9
                : 1311
                Affiliations
                Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Plant Functional Genomics of Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University , Yangzhou, China
                Author notes

                Edited by: Yuan-Ming Zhang, Huazhong Agricultural University, China

                Reviewed by: Julong Wei, Nanjing Agricultural University, China; Huihui Li, Institute of Crop Sciences (CAAS), China; Yanru Cui, University of California, Riverside, United States

                *Correspondence: Zefeng Yang, zfyang@ 123456yzu.edu.cn Chenwu Xu, cwxu@ 123456yzu.edu.cn

                These authors have contributed equally to this work

                This article was submitted to Plant Breeding, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2018.01311
                6134291
                30233634
                0c6fe424-e2fd-4b95-be2a-b86e1801fe10
                Copyright © 2018 Xu, Yang, Zhou, Yin, Li, Liu, Xu, Yang and Xu.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 13 June 2018
                : 20 August 2018
                Page count
                Figures: 3, Tables: 5, Equations: 0, References: 33, Pages: 10, Words: 0
                Categories
                Plant Science
                Original Research

                Plant science & Botany
                maize,starch,pasting properties,gwas,multi-locus
                Plant science & Botany
                maize, starch, pasting properties, gwas, multi-locus

                Comments

                Comment on this article