50
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mixed quantum-classical dynamics on the exact time-dependent potential energy surface: A fresh look at non-adiabatic processes

      Preprint
      , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The exact nuclear time-dependent potential energy surface arises from the exact decomposition of electronic and nuclear motion, recently presented in [A. Abedi, N. T. Maitra, and E. K. U. Gross, Phys. Rev. Lett. 105, 123002 (2010)]. Such time-dependent potential drives nuclear motion and fully accounts for the coupling to the electronic subsystem. We investigate the features of the potential in the context of electronic non-adiabatic processes and employ it to study the performance of the classical approximation on nuclear dynamics. We observe that the potential, after the nuclear wave-packet splits at an avoided crossing, develops dynamical steps connecting different regions, along the nuclear coordinate, in which it has the same slope as one or the other adiabatic surface. A detailed analysis of these steps is presented for systems with different non-adiabatic coupling strength. The exact factorization of the electron-nuclear wave-function is at the basis of the decomposition. In particular, the nuclear part is the true nuclear wave-function, solution of a time-dependent Schroedinger euqation and leading to the exact many-body density and current density. As a consequence, the Ehrenfest theorem can be extended to the nuclear subsystem and Hamiltonian, as discussed here with an analytical derivation and numerical results.

          Related collections

          Author and article information

          Journal
          01 July 2013
          Article
          10.1080/00268976.2013.843731
          1307.0351
          0c73824e-9458-424e-8c02-cd35075647ff

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          29 pages, 10 figures
          physics.chem-ph

          Comments

          Comment on this article