0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Shuttle Peptide Delivers Base Editor RNPs to Rhesus Monkey Airway Epithelial Cells In Vivo

      Preprint
      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Gene editing strategies for cystic fibrosis are challenged by the complex barrier properties of airway epithelia. We previously reported that the amphiphilic S10 shuttle peptide non-covalently combined with CRISPR-associated (Cas) ribonucleoprotein (RNP) enabled editing of human and mouse airway epithelial cells. Here, to improve base editor RNP delivery, we optimized S10 to derive the S315 peptide. Following intratracheal aerosol of Cy5-labeled peptide cargo in rhesus macaques, we confirmed delivery throughout the respiratory tract. Subsequently, we targeted CCR5 with co-administration of ABE8e-Cas9 RNP and S315. We achieved editing efficiencies of up to 5.3% in rhesus airway epithelia. Moreover, we documented persistence of edited epithelia for up to 12 months in mice. Finally, delivery of ABE8e-Cas9 targeting the CFTR R553X mutation restored anion channel function in cultured human airway epithelial cells. These results demonstrate the therapeutic potential of base editor delivery with S315 to functionally correct the CFTR R553X mutation in respiratory epithelia.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          A robust and high-throughput Cre reporting and characterization system for the whole mouse brain

          The Cre/lox system is widely used in mice to achieve cell-type-specific gene expression. However, a strong and universal responding system to express genes under Cre control is still lacking. We have generated a set of Cre reporter mice with strong, ubiquitous expression of fluorescent proteins of different spectra. The robust native fluorescence of these reporters enables direct visualization of fine dendritic structures and axonal projections of the labeled neurons, which is useful in mapping neuronal circuitry, imaging and tracking specific cell populations in vivo. Using these reporters and a high-throughput in situ hybridization platform, we are systematically profiling Cre-directed gene expression throughout the mouse brain in a number of Cre-driver lines, including novel Cre lines targeting different cell types in the cortex. Our expression data are displayed in a public online database to help researchers assess the utility of various Cre-driver lines for cell-type-specific genetic manipulation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage

            Summary The spontaneous deamination of cytosine is a major source of C•G to T•A transitions, which account for half of known human pathogenic point mutations. The ability to efficiently convert target A•T base pairs to G•C therefore could advance the study and treatment of genetic diseases. While the deamination of adenine yields inosine, which is treated as guanine by polymerases, no enzymes are known to deaminate adenine in DNA. Here we report adenine base editors (ABEs) that mediate conversion of A•T to G•C in genomic DNA. We evolved a tRNA adenosine deaminase to operate on DNA when fused to a catalytically impaired CRISPR-Cas9. Extensive directed evolution and protein engineering resulted in seventh-generation ABEs (e.g., ABE7.10), that convert target A•T to G•C base pairs efficiently (~50% in human cells) with very high product purity (typically ≥ 99.9%) and very low rates of indels (typically ≤ 0.1%). ABEs introduce point mutations more efficiently and cleanly than a current Cas9 nuclease-based method, induce less off-target genome modification than Cas9, and can install disease-correcting or disease-suppressing mutations in human cells. Together with our previous base editors, ABEs advance genome editing by enabling the direct, programmable introduction of all four transition mutations without double-stranded DNA cleavage.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Basal cells as stem cells of the mouse trachea and human airway epithelium.

              The pseudostratified epithelium of the mouse trachea and human airways contains a population of basal cells expressing Trp-63 (p63) and cytokeratins 5 (Krt5) and Krt14. Using a KRT5-CreER(T2) transgenic mouse line for lineage tracing, we show that basal cells generate differentiated cells during postnatal growth and in the adult during both steady state and epithelial repair. We have fractionated mouse basal cells by FACS and identified 627 genes preferentially expressed in a basal subpopulation vs. non-BCs. Analysis reveals potential mechanisms regulating basal cells and allows comparison with other epithelial stem cells. To study basal cell behaviors, we describe a simple in vitro clonal sphere-forming assay in which mouse basal cells self-renew and generate luminal cells, including differentiated ciliated cells, in the absence of stroma. The transcriptional profile identified 2 cell-surface markers, ITGA6 and NGFR, which can be used in combination to purify human lung basal cells by FACS. Like those from the mouse trachea, human airway basal cells both self-renew and generate luminal daughters in the sphere-forming assay.
                Bookmark

                Author and article information

                Contributors
                Journal
                Res Sq
                ResearchSquare
                Research Square
                American Journal Experts
                17 February 2023
                : rs.3.rs-2540755
                Affiliations
                University of Iowa
                University of Iowa
                Feldan Therapeutics
                Feldan Therapeutics
                Feldan Therapeutics
                Feldan Therapeutics
                Feldan Therapeutics
                TransBIOTech
                University of Iowa
                Broad Institute
                Broad Institute
                University of California - Davis
                Feldan Therapeutics
                University of Iowa
                Author notes

                Contributions

                PBM, AFT, GAN, DRL, KK, SH, XC, and DG conceived and designed the experiments. AFT performed all rhesus monkey studies. KK, ST, HBF, MH, and JR carried out experiments and analyzed data. FC performed the Ai9 mouse study. PBM, AFT, GAN, XC, KK, ST, and DG wrote the manuscript.

                Author information
                http://orcid.org/0000-0001-9617-6606
                http://orcid.org/0000-0002-4067-577X
                Article
                10.21203/rs.3.rs-2540755
                10.21203/rs.3.rs-2540755/v1
                9949254
                36824928
                0cb9ab6f-c59b-43bd-a5bf-be283125995f

                This work is licensed under a Creative Commons Attribution 4.0 International License, which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.

                License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

                History
                Categories
                Article

                cystic fibrosis,adenine base editor,ribonucleoprotein

                Comments

                Comment on this article