8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Upregulated circRNA ARHGAP10 Predicts an Unfavorable Prognosis in NSCLC through Regulation of the miR-150-5p/GLUT-1 Axis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Non-small-cell lung cancer (NSCLC) is one of the deadliest cancers in the world. Circular RNA (circRNA) has been shown to participate in oncogenesis regulation, including lung cancer. Although the involvement of circRNAs in lung cancer has been reported, the regulatory mechanisms of circRNAs in NSCLC remain poorly understood. Thus, the present study aims at investigating the role of circARHGAP10 in NSCLC progression, which has been observed to be significantly upregulated in both NSCLC tissues and cell lines with profile analysis. A higher expression of circARHGAP10 also leads to a poor prognosis in NSCLC patients with fluorescence in situ hybridization (FISH). Both in vitro and in vivo experiments found that the downregulation of circARHGAP10 suppressed glycometabolism by decreasing GLUT1 expression. Silencing circARHGAP10 also suppressed proliferation and metastasis by targeting the miR-150-5p/GLUT1 axis in NSCLC, which was confirmed with a luciferase reporter assay. Overexpression of GLUT1 or downregulation miR-150-5p will recover NSCLC cell proliferation and metastasis after a knockdown of circARHGAP10. Taken together, these findings demonstrate that circARHGAP10 suppresses NSCLC progression by acting as a miR-150-5p sponge to promote GLUT1 expression. Thus, circARHGAP10 may be a potential target for NSCLC treatment.

          Related collections

          Most cited references11

          • Record: found
          • Abstract: found
          • Article: not found

          Cancer Statistics for Hispanics/Latinos, 2018

          Cancer is the leading cause of death among Hispanics/Latinos, who represent the largest racial/ethnic minority group in the United States, accounting for 17.8% (57.5 million) of the total population in the continental United States and Hawaii in 2016. In addition, more than 3 million Hispanic Americans live in the US territory of Puerto Rico. Every 3 years, the American Cancer Society reports on cancer occurrence, risk factors, and screening for Hispanics in the United States based on data from the National Cancer Institute, the North American Association of Central Cancer Registries, and the Centers for Disease Control and Prevention. For the first time, contemporary incidence and mortality rates for Puerto Rico, which has a 99% Hispanic population, are also presented. An estimated 149,100 new cancer cases and 42,700 cancer deaths will occur among Hispanics in the continental United States and Hawaii in 2018. For all cancers combined, Hispanics have 25% lower incidence and 30% lower mortality compared with non-Hispanic whites, although rates of infection-related cancers, such as liver, are up to twice as high in Hispanics. However, these aggregated data mask substantial heterogeneity within the Hispanic population because of variable cancer risk, as exemplified by the substantial differences in the cancer burden between island Puerto Ricans and other US Hispanics. For example, during 2011 to 2015, prostate cancer incidence rates in Puerto Rico (146.6 per 100,000) were 60% higher than those in other US Hispanics combined (91.6 per 100,000) and 44% higher than those in non-Hispanic whites (101.7 per 100,000). Prostate cancer is also the leading cause of cancer death among men in Puerto Rico, accounting for nearly 1 in 6 cancer deaths during 2011-2015, whereas lung cancer is the leading cause of cancer death among other US Hispanic men combined. Variations in cancer risk are driven by differences in exposure to cancer-causing infectious agents and behavioral risk factors as well as the prevalence of screening. Strategies for reducing cancer risk in Hispanic populations include targeted, culturally appropriate interventions for increasing the uptake of preventive services and reducing cancer risk factor prevalence, as well as additional funding for Puerto Rico-specific and subgroup-specific cancer research and surveillance.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The distinct metabolic phenotype of lung squamous cell carcinoma defines selective vulnerability to glycolytic inhibition

            Adenocarcinoma (ADC) and squamous cell carcinoma (SqCC) are the two predominant subtypes of non-small cell lung cancer (NSCLC) and are distinct in their histological, molecular and clinical presentation. However, metabolic signatures specific to individual NSCLC subtypes remain unknown. Here, we perform an integrative analysis of human NSCLC tumour samples, patient-derived xenografts, murine model of NSCLC, NSCLC cell lines and The Cancer Genome Atlas (TCGA) and reveal a markedly elevated expression of the GLUT1 glucose transporter in lung SqCC, which augments glucose uptake and glycolytic flux. We show that a critical reliance on glycolysis renders lung SqCC vulnerable to glycolytic inhibition, while lung ADC exhibits significant glucose independence. Clinically, elevated GLUT1-mediated glycolysis in lung SqCC strongly correlates with high 18F-FDG uptake and poor prognosis. This previously undescribed metabolic heterogeneity of NSCLC subtypes implicates significant potential for the development of diagnostic, prognostic and targeted therapeutic strategies for lung SqCC, a cancer for which existing therapeutic options are clinically insufficient.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Ovarian Cancer Relies on Glucose Transporter 1 to Fuel Glycolysis and Growth: Anti-Tumor Activity of BAY-876

              The recent progresses in understanding of cancer glycolytic phenotype have offered new strategies to manage ovarian cancer and other malignancies. However, therapeutic targeting of glycolysis to treat cancer remains unsuccessful due to complex mechanisms of tumor glycolysis and the lack of selective, potent and safe glycolytic inhibitors. Recently, BAY-876 was identified as a new-generation inhibitor of glucose transporter 1 (GLUT1), a GLUT isoform commonly overexpressed but functionally poorly defined in ovarian cancer. Notably, BAY-876 has not been evaluated in any cell or preclinical animal models since its discovery. We herein took advantage of BAY-876 and molecular approaches to study GLUT1 regulation, targetability, and functional relevance to cancer glycolysis. The anti-tumor activity of BAY-876 was evaluated with ovarian cancer cell line- and patient-derived xenograft (PDX) models. Our results show that inhibition of GLUT1 is sufficient to block basal and stress-regulated glycolysis, and anchorage-dependent and independent growth of ovarian cancer cells. BAY-876 dramatically inhibits tumorigenicity of both cell line-derived xenografts and PDXs. These studies provide direct evidence that GLUT1 is causally linked to the glycolytic phenotype in ovarian cancer. BAY-876 is a potent blocker of GLUT1 activity, glycolytic metabolism and ovarian cancer growth, holding promise as a novel glycolysis-targeted anti-cancer agent.
                Bookmark

                Author and article information

                Contributors
                Journal
                Mol Ther Nucleic Acids
                Mol Ther Nucleic Acids
                Molecular Therapy. Nucleic Acids
                American Society of Gene & Cell Therapy
                2162-2531
                21 August 2019
                06 December 2019
                21 August 2019
                : 18
                : 219-231
                Affiliations
                [1 ]Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
                [2 ]Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
                [3 ]Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
                [4 ]Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
                Author notes
                []Corresponding author: Gang Huang, MD, Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Road, Pudong New Area, Shanghai 201318, P.R. China. huanggang@ 123456sumhs.edu.cn
                [∗∗ ]Corresponding author: Jianjun Liu, Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China. nuclearj@ 123456163.com
                [∗∗∗ ]Corresponding author: Chen Yang, Department of Urology, Huashan Hospital, Fudan University, Shanghai, 200040, China. zhyishya@ 123456sina.com
                Article
                S2162-2531(19)30229-X
                10.1016/j.omtn.2019.08.016
                6796700
                31561126
                0d0b8d91-44a3-4999-aeda-ddf8ae75e7ac
                © 2019 The Author(s)

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 27 March 2019
                : 13 August 2019
                Categories
                Article

                Molecular medicine
                circrna arhgap10,mir-150-5p,glut-1,non-small-cell lung cancer,high-throughput rna sequencing

                Comments

                Comment on this article