2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Activation of ChTLR15/ChNF-κB-ChNLRP3/ChIL-1β signaling transduction pathway mediated inflammatory responses to E. tenella infection

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Avian coccidiosis caused by Eimeria leads to severe economic losses in the global poultry industry. Although chicken Toll-like receptor 15 (ChTLR15) was reported to be involved in Eimeria infection, the detailed mechanism underlying its role in the inflammatory response remains to be discovered. The present study demonstrated that the mRNA expression levels of ChTLR15, ChMyD88, ChNF- κB, ChNLRP3, ChCaspase-1, ChIL-18 and ChIL-1β and the protein levels of ChTLR15 and ChNLRP3 in cecal tissues of Eimeria-infected chickens were significantly elevated at 4, 12, and 24 h compared with those in noninfected control chickens ( p < 0.01). Moreover, the mRNA levels of molecules in the ChTLR15/ChNF-κB and ChNLRP3/ChIL-1β pathways and the protein levels of ChTLR15 and ChNLRP3 in chicken embryo fibroblast cells (DF-1) stimulated by E. tenella sporozoites were consistent with those in Eimeria-infected chickens. Furthermore, overexpression of ChTLR15 in DF1 cells augmented activation of the ChTLR15/ChNF-κB and ChNLRP3/ChIL-1β pathways when stimulated with E. tenella sporozoites, while knockdown of ChTLR15 in DF1 cells showed inverse effects. Taken together, the present study provides evidence that E. tenella sporozoites specifically activate ChTLR15 and then trigger activation of the ChNLRP3/ChIL-1β pathway, which partially mediates inflammatory responses to Eimeria infection.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.

          The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data. Copyright 2001 Elsevier Science (USA).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments.

            Currently, a lack of consensus exists on how best to perform and interpret quantitative real-time PCR (qPCR) experiments. The problem is exacerbated by a lack of sufficient experimental detail in many publications, which impedes a reader's ability to evaluate critically the quality of the results presented or to repeat the experiments. The Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines target the reliability of results to help ensure the integrity of the scientific literature, promote consistency between laboratories, and increase experimental transparency. MIQE is a set of guidelines that describe the minimum information necessary for evaluating qPCR experiments. Included is a checklist to accompany the initial submission of a manuscript to the publisher. By providing all relevant experimental conditions and assay characteristics, reviewers can assess the validity of the protocols used. Full disclosure of all reagents, sequences, and analysis methods is necessary to enable other investigators to reproduce results. MIQE details should be published either in abbreviated form or as an online supplement. Following these guidelines will encourage better experimental practice, allowing more reliable and unequivocal interpretation of qPCR results.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanism and Regulation of NLRP3 Inflammasome Activation.

              Members of the nucleotide-binding domain and leucine-rich repeat (LRR)-containing (NLR) family and the pyrin and HIN domain (PYHIN) family can form multiprotein complexes termed 'inflammasomes'. The biochemical function of inflammasomes is to activate caspase-1, which leads to the maturation of interleukin 1 beta (IL-1β) and IL-18 and the induction of pyroptosis, a form of cell death. Unlike other inflammasomes, the NLRP3 inflammasome can be activated by diverse stimuli. The importance of the NLRP3 inflammasome in immunity and human diseases has been well documented, but the mechanism and regulation of its activation remain unclear. In this review we summarize current understanding of the mechanism and regulation of NLRP3 inflammasome activation as well as recent advances in the noncanonical and alternative inflammasome pathways.
                Bookmark

                Author and article information

                Contributors
                madexing@neau.edu.cn
                Journal
                Vet Res
                Vet Res
                Veterinary Research
                BioMed Central (London )
                0928-4249
                1297-9716
                29 January 2021
                29 January 2021
                2021
                : 52
                : 15
                Affiliations
                [1 ]GRID grid.412243.2, ISNI 0000 0004 1760 1136, College of Veterinary Medicine, , Northeast Agricultural University, ; Harbin, 150030 Heilongjiang China
                [2 ]Heilongjiang Key Laboratory for Experimental Animals and Comparative Medicine, Harbin, 150030 Heilongjiang China
                [3 ]Shandong Vocational Animal Science and Veterinary College, Weifang, 261061 Shandong China
                [4 ]GRID grid.412243.2, ISNI 0000 0004 1760 1136, College of Food Science, , Northeast Agricultural University, ; Harbin, 150030 Heilongjiang China
                Author information
                http://orcid.org/0000-0003-0813-6458
                Article
                885
                10.1186/s13567-020-00885-8
                7844922
                33514434
                0d11b0a1-f324-4926-9a57-a2d15d1015a8
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 13 July 2020
                : 23 December 2020
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001809, National Natural Science Foundation of China;
                Award ID: 31973003
                Award Recipient :
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2021

                Veterinary medicine
                e. tenella sporozoites,chtlr15,chnlrp3,inflammatory responses
                Veterinary medicine
                e. tenella sporozoites, chtlr15, chnlrp3, inflammatory responses

                Comments

                Comment on this article