44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Toxoplasma MIC2 Is a Major Determinant of Invasion and Virulence

      research-article
      , *
      PLoS Pathogens
      Public Library of Science

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Like its apicomplexan kin, the obligate intracellular protozoan Toxoplasma gondii actively invades mammalian cells and uses a unique form of gliding motility. The recent identification of several transmembrane adhesive complexes, potentially capable of gripping external receptors and the sub-membrane actinomyosin motor, suggests that the parasite has multiple options for host-cell recognition and invasion. To test whether the transmembrane adhesin MIC2, together with its partner protein M2AP, participates in a major invasion pathway, we utilized a conditional expression system to introduce an anhydrotetracycline-responsive mic2 construct, allowing us to then knockout the endogenous mic2 gene. Conditional suppression of MIC2 provided the first opportunity to directly determine the role of this protein in infection. Reduced MIC2 expression resulted in mistrafficking of M2AP, markedly defective host-cell attachment and invasion, the loss of helical gliding motility, and the inability to support lethal infection in a murine model of acute toxoplasmosis. Survival of mice infected with MIC2-deficient parasites correlated with lower parasite burden in infected tissues, an attenuated inflammatory immune response, and induction of long-term protective immunity. Our findings demonstrate that the MIC2 protein complex is a major virulence determinant for Toxoplasma infection and that MIC2-deficient parasites constitute an effective live-attenuated vaccine for experimental toxoplasmosis.

          Synopsis

          Toxoplasma gondii is a protozoan parasite that infects a broad range of hosts including humans. In people with weakened immunity resulting from HIV/AIDS or immune-suppressive treatment following organ transplantation, reactivation of a chronic T. gondii infection represents a serious threat, potentially leading to lethal disease within the brain, heart, or lungs. As an intracellular parasite, invasion into a host cell is a critical first step in ensuring parasite survival during infection. By using a regulatable expression system, this study shows that an adhesive protein called MIC2 is a limiting component of the parasite's invasion system and that it is required for the corkscrew-like movement of the parasite. Moreover, infection of mice with parasites lacking MIC2 no longer resulted in an acute infection leading to death. Not only do mice survive infection, they are protected from infection with a lethal dose of wild-type parasites, indicating an induction of protective immunity. In addition to having implications for the development of live-attenuated vaccines, this work suggests that novel treatment strategies directed at MIC2 may limit the severity of Toxoplasma infections.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          TRAP is necessary for gliding motility and infectivity of plasmodium sporozoites.

          Many protozoans of the phylum Apicomplexa are invasive parasites that exhibit a substrate-dependent gliding motility. Plasmodium (malaria) sporozoites, the stage of the parasite that invades the salivary glands of the mosquito vector and the liver of the vertebrate host, express a surface protein called thrombospondin-related anonymous protein (TRAP) that has homologs in other Apicomplexa. By gene targeting in a rodent Plasmodium, we demonstrate that TRAP is critical for sporozoite infection of the mosquito salivary glands and the rat liver, and is essential for sporozoite gliding motility in vitro. This suggests that in Plasmodium sporozoites, and likely in other Apicomplexa, gliding locomotion and cell invasion have a common molecular basis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Conditional expression of Toxoplasma gondii apical membrane antigen-1 (TgAMA1) demonstrates that TgAMA1 plays a critical role in host cell invasion.

            Toxoplasma gondii is an obligate intracellular parasite and an important human pathogen. Relatively little is known about the proteins that orchestrate host cell invasion by T. gondii or related apicomplexan parasites (including Plasmodium spp., which cause malaria), due to the difficulty of studying essential genes in these organisms. We have used a recently developed regulatable promoter to create a conditional knockout of T. gondii apical membrane antigen-1 (TgAMA1). TgAMA1 is a transmembrane protein that localizes to the parasite's micronemes, secretory organelles that discharge during invasion. AMA1 proteins are conserved among apicomplexan parasites and are of intense interest as malaria vaccine candidates. We show here that T. gondii tachyzoites depleted of TgAMA1 are severely compromised in their ability to invade host cells, providing direct genetic evidence that AMA1 functions during invasion. The TgAMA1 deficiency has no effect on microneme secretion or initial attachment of the parasite to the host cell, but it does inhibit secretion of the rhoptries, organelles whose discharge is coupled to active host cell penetration. The data suggest a model in which attachment of the parasite to the host cell occurs in two distinct stages, the second of which requires TgAMA1 and is involved in regulating rhoptry secretion.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Acute toxoplasmosis leads to lethal overproduction of Th1 cytokines.

              Virulence in Toxoplasma gondii is strongly influenced by the genotype of the parasite. Type I strains uniformly cause rapid death in mice regardless of the host genotype or the challenge dose. In contrast, the outcome of infections with type II strains is highly dependent on the challenge dose and the genotype of the host. To understand the basis of acute virulence in toxoplasmosis, we compared low and high doses of the RH strain (type I) and the ME49/PTG strain (type II) of T. gondii in outbred mice. Differences in virulence were reflected in only modestly different growth rates in vivo, and both strains disseminated widely to different tissues. The key difference in the virulent RH strain was the ability to reach high tissue burdens rapidly following a low dose challenge. Lethal infections caused by type I (RH) or type II (PTG) strain infections were accompanied by extremely elevated levels of Th1 cytokines in the serum, including IFN-gamma, TNF-alpha, IL-12, and IL-18. Extensive liver damage and lymphoid degeneration accompanied the elevated levels of cytokines produced during lethal infection. Increased time of survival following lethal infection with the RH strain was provided by neutralization of IL-18, but not TNF-alpha or IFN-gamma. Nonlethal infections with a low dose of type II PTG strain parasites were characterized by a modest induction of Th1 cytokines that led to control of infection and minimal damage to host tissues. Our findings establish that overstimulation of immune responses that are normally necessary for protection is an important feature of acute toxoplasmosis.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                ppat
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                August 2006
                18 August 2006
                : 2
                : 8
                : e84
                Affiliations
                [1]W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
                Stanford University, United States of America
                Author notes
                * To whom correspondence should be addressed. E-mail: vcarruth@ 123456umich.edu

                ¤ Current address: Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America

                Article
                06-PLPA-RA-0165R2 plpa-02-08-03
                10.1371/journal.ppat.0020084
                1550269
                16933991
                0d6043c4-4299-4403-8285-b932c6685e81
                Copyright: © 2006 Huynh and Carruthers. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 9 May 2006
                : 10 July 2006
                Page count
                Pages: 10
                Categories
                Research Article
                Infectious Diseases
                Microbiology
                Parasitology
                Eukaryotes
                Custom metadata
                Huynh MH, Carruthers VB (2006) Toxoplasma MIC2 is a major determinant of invasion and virulence. PLoS Pathog 2(8): e84. DOI: 10.1371/journal.ppat.0020084

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article