23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Magnetic resonance imaging indicators of blood-brain barrier and brain water changes in young rats with kaolin-induced hydrocephalus

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Hydrocephalus is associated with enlargement of cerebral ventricles. We hypothesized that magnetic resonance (MR) imaging parameters known to be influenced by tissue water content would change in parallel with ventricle size in young rats and that changes in blood-brain barrier (BBB) permeability would be detected.

          Methods

          Hydrocephalus was induced by injection of kaolin into the cisterna magna of 4-week-old rats, which were studied 1 or 3 weeks later. MR was used to measure longitudinal and transverse relaxation times (T1 and T2) and apparent diffusion coefficients in several regions. Brain tissue water content was measured by the wet-dry weight method, and tissue density was measured in Percoll gradient columns. BBB permeability was measured by quantitative imaging of changes on T1-weighted images following injection of gadolinium diethylenetriamine penta-acetate (Gd-DTPA) tracer and microscopically by detection of fluorescent dextran conjugates.

          Results

          In nonhydrocephalic rats, water content decreased progressively from age 3 to 7 weeks. T1 and T2 and apparent diffusion coefficients did not exhibit parallel changes and there was no evidence of BBB permeability to tracers. The cerebral ventricles enlarged progressively in the weeks following kaolin injection. In hydrocephalic rats, the dorsal cortex was more dense and the white matter less so, indicating that the increased water content was largely confined to white matter. Hydrocephalus was associated with transient elevation of T1 in gray and white matter and persistent elevation of T2 in white matter. Changes in the apparent diffusion coefficients were significant only in white matter. Ventricle size correlated significantly with dorsal water content, T1, T2, and apparent diffusion coefficients. MR imaging showed evidence of Gd-DTPA leakage in periventricular tissue foci but not diffusely. These correlated with microscopic leak of larger dextran tracers.

          Conclusions

          MR characteristics cannot be used as direct surrogates for water content in the immature rat model of hydrocephalus, probably because they are also influenced by other changes in tissue composition that occur during brain maturation. There is no evidence for widespread persistent opening of BBB as a consequence of hydrocephalus in young rats. However, increase in focal BBB permeability suggests that periventricular blood vessels may be disrupted.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          Characteristics of gadolinium-DTPA complex: a potential NMR contrast agent.

          Chelation of the rare-earth element gadolinium (Gd) with diethylenetriaminepentaacetic acid (DTPA) results in a strongly paramagnetic, stable complex that is well tolerated in animals. The strongly paramagnetic gadolinium complex reduces hydrogen-proton relaxation times even in low concentrations (less than 0.01 mmol/L). The pharmacokinetic behavior of intravenously delivered Gd-DTPA is similar to the well known iodinated contrast agents used in urography and angiography; excretion is predominantly through the kidneys with greater than 90% recovery in 24 hr. The intravenous LD50 of the meglumine salt of Gd-DTPA is 10 mmol/kg for the rat; in vivo there is no evidence of dissociation of the gadolinium ion from the DTPA ligand. The combination of strong proton relaxation, in-vivo stability, rapid urinary excretion, and high tolerance favors the further development and the potential clinical application of gadolinium-DTPA as a contrast enhancer in magnetic resonance imaging.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tight junctions of the blood-brain barrier.

            1. The blood-brain barrier is essential for the maintenance and regulation of the neural microenvironment. The blood-brain barrier endothelial cells comprise an extremely low rate of transcytotic vesicles and a restrictive paracellular diffusion barrier. The latter is realized by the tight junctions between the endothelial cells of the brain microvasculature, which are subject of this review. Morphologically, blood-brain barrier-tight junctions are more similar to epithelial tight junctions than to endothelial tight junctions in peripheral blood vessels. 2. Although blood-brain barrier-tight junctions share many characteristics with epithelial tight junctions, there are also essential differences. However, in contrast to tight junctions in epithelial systems, structural and functional characteristics of tight junctions in endothelial cells are highly sensitive to ambient factors. 3. Many ubiquitous molecular constituents of tight junctions have been identified and characterized including claudins, occludin, ZO-1, ZO-2, ZO-3, cingulin, and 7H6. Signaling pathways involved in tight junction regulation comprise, among others, G-proteins, serine, threonine, and tyrosine kinases, extra- and intracellular calcium levels, cAMP levels, proteases, and TNF alpha. Common to most of these pathways is the modulation of cytoskeletal elements which may define blood-brain barrier characteristics. Additionally, cross-talk between components of the tight junction- and the cadherin-catenin system suggests a close functional interdependence of the two cell-cell contact systems. 4. Recent studies were able to elucidate crucial aspects of the molecular basis of tight junction regulation. An integration of new results into previous morphological work is the central intention of this review.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Increased caveolin-1 expression precedes decreased expression of occludin and claudin-5 during blood-brain barrier breakdown.

              The significance of caveolin-1, a major constituent of caveolae, and the tight junction proteins occludin and claudin-5 in early blood-brain barrier (BBB) breakdown was assessed by sequential demonstration of the expression of these proteins over a period of 12 h to 6 days post-lesion in the rat cortical cold injury model. Pial and intracerebral vessels of control rats showed punctuate endothelial immunoreactivity for caveolin-1 and caveolin-2, while claudin-5 and occludin were localized as longitudinal strands in endothelium. During the early phase of BBB breakdown following injury at 12 h and on day 2, western blot analyses detected a significant increase in caveolin-1 expression at the lesion site while immunohistochemistry showed that the caveolin-1 increase was localized to the endothelium of lesion vessels. Decreased expression of occludin occurred at the lesion site only on days 2 and 4 post-lesion while claudin-5 expression was decreased only on day 2. Dual labeling for fibronectin, a marker of BBB breakdown, and caveolin-1 or the tight junction proteins demonstrated that only lesion vessels with BBB breakdown showed a marked increase of caveolin-1, loss of occludin and reduced localization of claudin-5. The issue whether these alterations precede or follow BBB breakdown is uncertain; however, increased expression of caveolin-1 preceded the decreased expression of occludin and claudin-5. Thus caveolae and caveolin-1 have an important role in early BBB breakdown and could be potential therapeutic targets in the control of early brain edema.
                Bookmark

                Author and article information

                Journal
                Fluids Barriers CNS
                Fluids and Barriers of the CNS
                BioMed Central
                2045-8118
                2011
                11 August 2011
                : 8
                : 22
                Affiliations
                [1 ]Department of Pathology, University of Manitoba; 401 Brodie Centre, 727 McDermot Avenue, Winnipeg MB R3E 3P5 Canada
                [2 ]Manitoba Institute of Child Health; 715 McDermot Avenue, Winnipeg, MB R3E 3P4 Canada
                [3 ]formerly Department of Pharmacology and Therapeutics, University of Manitoba; 753 McDermot Avenue, Winnipeg MB, R3E 0T6 Canada; current address Department of Surgery, University of Saskatchewan; 103 Hospital Drive, Suite 2646, Saskatoon SK, S7N 0W8 Canada
                [4 ]Department of Radiology, University of Manitoba; A006 Chown Building, 753 McDermot Avenue, Winnipeg MB R3E 0W3 Canada
                [5 ]formerly Manitoba Institute of Child Health; current address Department of Paediatrics, University of Calgary; 2888 Shaganappi Trail NW, Calgary AB, T3B 6A8 Canada
                Article
                2045-8118-8-22
                10.1186/2045-8118-8-22
                3162928
                21834998
                0d65d3db-a75b-4b37-8491-65d401dcf45a
                Copyright ©2011 Del Bigio et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 3 May 2011
                : 11 August 2011
                Categories
                Research

                Neurology
                endothelium,magnetic resonance,tissue water,density,hydrocephalus
                Neurology
                endothelium, magnetic resonance, tissue water, density, hydrocephalus

                Comments

                Comment on this article