0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Scoparone attenuates PD-L1 expression in human breast cancer cells by MKP-3 upregulation

      research-article
      a , b , c
      Animal Cells and Systems
      Taylor & Francis
      Breast cancer, PD-L1, scoparone, MKP-3

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Breast cancer is a frequently occurring malignant tumor that is one of the leading causes of cancer-related deaths in women worldwide. Monoclonal antibodies that block programed cell death 1 (PD-1)/programed cell death ligand 1 (PD-L1) – a typical immune checkpoint – are currently the recommended standard therapies for many advanced and metastatic tumors such as triple-negative breast cancer. However, some patients develop drug resistance, leading to unfavorable treatment outcomes. Therefore, other approaches are required for anticancer treatments, such as downregulation of PD-L1 expression and promotion of degradation of PD-L1. Scoparone (SCO) is a bioactive compound isolated from Artemisia capillaris that exhibits antitumor activity. However, the effect of SCO on PD-L1 expression in cancer has not been confirmed yet. This study aimed to evaluate the role of SCO in PD-L1 expression in breast cancer cells in vitro. Our results show that SCO downregulated PD-L1 expression in a dose-dependent manner, via AKT inhibition. Interestingly, SCO treatment did not alter PTEN expression, but increased the expression of mitogen-activated protein kinase phosphatase-3 (MKP-3). In addition, the SCO-induced decrease in PD-L1 expression was reversed by siRNA-mediated MKP-3 knockdown. Collectively, these findings suggest that SCO inhibited the expression of PD-L1 in breast cancer cells by upregulating MKP-3 expression. Therefore, SCO may serve as an innovative combinatorial agent for cancer immunotherapy.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: found
          • Article: not found

          Cancer immunotherapy using checkpoint blockade

          The release of negative regulators of immune activation (immune checkpoints) that limit antitumor responses has resulted in unprecedented rates of long-lasting tumor responses in patients with a variety of cancers. This can be achieved by antibodies blocking the cytotoxic T lymphocyte antigen-4 (CTLA-4) or the programmed death-1 (PD-1) pathway, either alone or in combination. The main premise for inducing an immune response is the pre-existence of antitumor T cells that were limited by specific immune checkpoints. Most patients who have tumor responses maintain long lasting disease control, yet one third of patients relapse. Mechanisms of acquired resistance are currently poorly understood, but evidence points to alterations that converge on the antigen presentation and interferon gamma signaling pathways. New generation combinatorial therapies may overcome resistance mechanisms to immune checkpoint therapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Breast Cancer Treatment

            Breast cancer will be diagnosed in 12% of women in the United States over the course of their lifetimes and more than 250 000 new cases of breast cancer were diagnosed in the United States in 2017. This review focuses on current approaches and evolving strategies for local and systemic therapy of breast cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Breast cancer

              Breast cancer is the most frequent malignancy in women worldwide and is curable in ~70-80% of patients with early-stage, non-metastatic disease. Advanced breast cancer with distant organ metastases is considered incurable with currently available therapies. On the molecular level, breast cancer is a heterogeneous disease; molecular features include activation of human epidermal growth factor receptor 2 (HER2, encoded by ERBB2), activation of hormone receptors (oestrogen receptor and progesterone receptor) and/or BRCA mutations. Treatment strategies differ according to molecular subtype. Management of breast cancer is multidisciplinary; it includes locoregional (surgery and radiation therapy) and systemic therapy approaches. Systemic therapies include endocrine therapy for hormone receptor-positive disease, chemotherapy, anti-HER2 therapy for HER2-positive disease, bone stabilizing agents, poly(ADP-ribose) polymerase inhibitors for BRCA mutation carriers and, quite recently, immunotherapy. Future therapeutic concepts in breast cancer aim at individualization of therapy as well as at treatment de-escalation and escalation based on tumour biology and early therapy response. Next to further treatment innovations, equal worldwide access to therapeutic advances remains the global challenge in breast cancer care for the future.
                Bookmark

                Author and article information

                Journal
                Anim Cells Syst (Seoul)
                Anim Cells Syst (Seoul)
                Animal Cells and Systems
                Taylor & Francis
                1976-8354
                2151-2485
                9 February 2024
                2024
                9 February 2024
                : 28
                : 1
                : 55-65
                Affiliations
                [a ]Department of Biomedical Sciences, Inha University College of Medicine , Incheon, Republic of Korea
                [b ]Cancer Immunotherapy Evaluation Team, Non-Clinical Evaluation Center, Osong Medical Innovation Foundation (KBIO Health) , Cheongju, Republic of Korea
                [c ]Department of Molecular Medicine, Inha University College of Medicine , Incheon, Republic of Korea
                Author notes
                [CONTACT ] Hong Seok Kim kimhs0622@ 123456inha.ac.kr Department of Molecular Medicine, College of Medicine, Inha University , Incheon 22212, Republic of Korea

                Supplemental data for this article can be accessed online at https://doi.org/10.1080/19768354.2024.2315950.

                Article
                2315950
                10.1080/19768354.2024.2315950
                10860470
                38348341
                0dd778f4-c921-4ed3-ab28-593ec1c3f5e2
                © 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group

                This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

                History
                Page count
                Figures: 5, Tables: 0, Equations: 0, References: 82, Pages: 11
                Categories
                Research Article
                Research Article

                breast cancer,pd-l1,scoparone,mkp-3
                breast cancer, pd-l1, scoparone, mkp-3

                Comments

                Comment on this article