22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bladder, Bowel, and Sexual Dysfunction in Parkinson's Disease

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bladder dysfunction (urinary urgency/frequency), bowel dysfunction (constipation), and sexual dysfunction (erectile dysfunction) (also called “pelvic organ” dysfunctions) are common nonmotor disorders in Parkinson's disease (PD). In contrast to motor disorders, pelvic organ autonomic dysfunctions are often nonresponsive to levodopa treatment. The brain pathology causing the bladder dysfunction (appearance of overactivity) involves an altered dopamine-basal ganglia circuit, which normally suppresses the micturition reflex. By contrast, peripheral myenteric pathology causing slowed colonic transit (loss of rectal contractions) and central pathology causing weak strain and paradoxical anal sphincter contraction on defecation (PSD, also called as anismus) are responsible for the bowel dysfunction. In addition, hypothalamic dysfunction is mostly responsible for the sexual dysfunction (decrease in libido and erection) in PD, via altered dopamine-oxytocin pathways, which normally promote libido and erection. The pathophysiology of the pelvic organ dysfunction in PD differs from that in multiple system atrophy; therefore, it might aid in differential diagnosis. Anticholinergic agents are used to treat bladder dysfunction in PD, although these drugs should be used with caution particularly in elderly patients who have cognitive decline. Dietary fibers, laxatives, and “prokinetic” drugs such as serotonergic agonists are used to treat bowel dysfunction in PD. Phosphodiesterase inhibitors are used to treat sexual dysfunction in PD. These treatments might be beneficial in maximizing the patients' quality of life.

          Related collections

          Most cited references297

          • Record: found
          • Abstract: found
          • Article: not found

          Microcircuitry of the direct and indirect pathways of the basal ganglia.

          Our understanding of the organization of the basal ganglia has advanced markedly over the last 10 years, mainly due to increased knowledge of their anatomical, neurochemical and physiological organization. These developments have led to a unifying model of the functional organization of the basal ganglia in both health and disease. The hypothesis is based on the so-called "direct" and "indirect" pathways of the flow of cortical information through the basal ganglia and has profoundly influenced the field of basal ganglia research, providing a framework for anatomical, physiological and clinical studies. The recent introduction of powerful techniques for the analysis of neuronal networks has led to further developments in our understanding of the basal ganglia. The objective of this commentary is to build upon the established model of the basal ganglia connectivity and review new anatomical findings that lead to the refinement of some aspects of the model. Four issues will be discussed. (1) The existence of several routes for the flow of cortical information along "indirect" pathways. (2) The synaptic convergence of information flowing through the "direct" and "indirect" pathways at the single-cell level in the basal ganglia output structures. (3) The convergence of functionally diverse information from the globus pallidus and the ventral pallidum at different levels of the basal ganglia. (4) The interconnections between the two divisions of the pallidal complex and the subthalamic nucleus and the characterization of the neuronal network underlying the indirect pathways. The findings summarized in this commentary confirm and elaborate the models of the direct and indirect pathways of information flow through the basal ganglia and provide a morphological framework for future studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Muscarinic receptors: their distribution and function in body systems, and the implications for treating overactive bladder.

            1. The effectiveness of antimuscarinic agents in the treatment of the overactive bladder (OAB) syndrome is thought to arise through blockade of bladder muscarinic receptors located on detrusor smooth muscle cells, as well as on nondetrusor structures. 2. Muscarinic M3 receptors are primarily responsible for detrusor contraction. Limited evidence exists to suggest that M2 receptors may have a role in mediating indirect contractions and/or inhibition of detrusor relaxation. In addition, there is evidence that muscarinic receptors located in the urothelium/suburothelium and on afferent nerves may contribute to the pathophysiology of OAB. Blockade of these receptors may also contribute to the clinical efficacy of antimuscarinic agents. 3. Although the role of muscarinic receptors in the bladder, other than M3 receptors, remains unclear, their role in other body systems is becoming increasingly well established, with emerging evidence supporting a wide range of diverse functions. Blockade of these functions by muscarinic receptor antagonists can lead to similarly diverse adverse effects associated with antimuscarinic treatment, with the range of effects observed varying according to the different receptor subtypes affected. 4. This review explores the evolving understanding of muscarinic receptor functions throughout the body, with particular focus on the bladder, gastrointestinal tract, eye, heart, brain and salivary glands, and the implications for drugs used to treat OAB. The key factors that might determine the ideal antimuscarinic drug for treatment of OAB are also discussed. Further research is needed to show whether the M3 selective receptor antagonists have any advantage over less selective drugs, in leading to fewer adverse events.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Restless legs syndrome: revisiting the dopamine hypothesis from the spinal cord perspective.

              Restless legs syndrome (RLS) involves abnormal limb sensations that diminish with motor activity, worsen at rest, have a circadian peak in expression in the evening and at night, and can severely disrupt sleep. Primary treatment is directed at CNS dopaminergic systems, particularly activation of D(2)-like (D(2), D(3), and D(4)) receptors. Although RLS affects 2% to 15% of the general population, the neural circuitry contributing to RLS remains speculative, and there is currently no accepted animal model to enable detailed mechanistic analyses. Traditional views suggest that RLS arises from supraspinal sources which favor facilitation of the flexor reflex and emergence of the RLS phenotype. The authors forward the hypothesis that RLS reflects a dysfunction of the little-studied dorsoposterior hypothalamic dopaminergic A11 cell group. They assert that, as the sole source of spinal dopamine, reduced drive in this system can lead to spinal network changes wholly consistent with RLS. The authors summarize their recent investigations on spinal cord dopamine dysfunction that rely on lesions centered on A11, and on studies in D(3) receptor knockout (D(3)KO) mice. Excessive locomotor behavior is evident in both sets of animals, and D(3)KO mice exhibit facilitation rather than the expected depression of spinal reflexes in the presence of dopamine as well as a reversal in their circadian expression of the rate-limiting enzyme for dopamine synthesis, tyrosine hydroxylase. Taken together, these findings are consistent with an involvement of spinal dopamine dysfunction in the etiology of RLS, and they argue that the D(3)KO mouse might serve as a relevant animal model to study the underlying mechanisms of RLS.
                Bookmark

                Author and article information

                Journal
                Parkinsons Dis
                PD
                Parkinson's Disease
                SAGE-Hindawi Access to Research
                2090-8083
                2042-0080
                2011
                12 September 2011
                : 2011
                : 924605
                Affiliations
                1Neurology Division, Department of Internal Medicine, Sakura Medical Center, Toho University, 564-1 Shimoshizu, Sakura 285-8741, Japan
                2Department of Neurology, Chiba University, Chiba 263-8522, Japan
                3Department of Urology, Dokkyo Medical University, Tochigi 321-0293, Japan
                Author notes

                Academic Editor: Irena Rektorova

                Article
                10.4061/2011/924605
                3171780
                21918729
                0ded019f-3ae0-427f-b14f-21095a510cef
                Copyright © 2011 Ryuji Sakakibara et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 17 October 2010
                : 6 May 2011
                : 30 May 2011
                Categories
                Review Article

                Neurology
                Neurology

                Comments

                Comment on this article