23
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Publish your biodiversity research with us!

      Submit your article here.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cytogenetic study of heptapterids (Teleostei, Siluriformes) with particular respect to the Nemuroglanis subclade

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract

          The catfish family Heptapteridae (order Siluriformes ) is endemic to the Neotropics and is one of the most common of the fish families in small bodies of water. Although over 200 species have been identified in this family, very few have been characterized cytogenetically. Here, we analyze the chromosome genomes of four species of Heptapteridae : Cetopsorhamdia iheringi (Schubart & Gomes, 1959), 2n = 58, comprising 28 metacentric (m) + 26 submetacentric (sm) + 4 subtelomeric (st) chromosomes; Pimelodella vittata (Lütken, 1874), 2n = 46, comprising 16m + 22sm + 8st; Rhamdia prope quelen (Quoy & Gaimard, 1824), 2n = 58 comprising 26m + 16sm + 14st + 2 acrocentric; and Rhamdiopsis prope microcephala (Lütken, 1874), 2n = 56, comprising 12m + 30sm + 14st. The nucleolus organizer regions (NORs) were located in a single chromosome pair in all species. The two species that belonged to the subclade Nemuroglanis , Cetopsorhamdia iheringi and Rhamdia prope quelen , had a diploid chromosome number of 58 and an interstitial NOR adjacent to a C + block located on one of the larger chromosome pairs in the complement. Our results from conventional cytogenetic techniques in combination with FISH using 18S and 5S rDNA probes corroborated the taxonomical hypothesis for the formation of the Nemuroglanis subclade.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The 5S rDNA family evolves through concerted and birth-and-death evolution in fish genomes: an example from freshwater stingrays

          Background Ribosomal 5S genes are well known for the critical role they play in ribosome folding and functionality. These genes are thought to evolve in a concerted fashion, with high rates of homogenization of gene copies. However, the majority of previous analyses regarding the evolutionary process of rDNA repeats were conducted in invertebrates and plants. Studies have also been conducted on vertebrates, but these analyses were usually restricted to the 18S, 5.8S and 28S rRNA genes. The recent identification of divergent 5S rRNA gene paralogs in the genomes of elasmobranches and teleost fishes indicate that the eukaryotic 5S rRNA gene family has a more complex genomic organization than previously thought. The availability of new sequence data from lower vertebrates such as teleosts and elasmobranches enables an enhanced evolutionary characterization of 5S rDNA among vertebrates. Results We identified two variant classes of 5S rDNA sequences in the genomes of Potamotrygonidae stingrays, similar to the genomes of other vertebrates. One class of 5S rRNA genes was shared only by elasmobranches. A broad comparative survey among 100 vertebrate species suggests that the 5S rRNA gene variants in fishes originated from rounds of genome duplication. These variants were then maintained or eliminated by birth-and-death mechanisms, under intense purifying selection. Clustered multiple copies of 5S rDNA variants could have arisen due to unequal crossing over mechanisms. Simultaneously, the distinct genome clusters were independently homogenized, resulting in the maintenance of clusters of highly similar repeats through concerted evolution. Conclusions We believe that 5S rDNA molecular evolution in fish genomes is driven by a mixed mechanism that integrates birth-and-death and concerted evolution.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Organization of 5S rDNA in species of the fish Leporinus: two different genomic locations are characterized by distinct nontranscribed spacers.

            To address understanding the organization of the 5S rRNA multigene family in the fish genome, the nucleotide sequence and organization array of 5S rDNA were investigated in the genus Leporinus, a representative freshwater fish group of South American fauna. PCR, subgenomic library screening, genomic blotting, fluorescence in situ hybridization, and DNA sequencing were employed in this study. Two arrays of 5S rDNA were identified for all species investigated, one consisting of monomeric repeat units of around 200 bp and another one with monomers of 900 bp. These 5S rDNA arrays were characterized by distinct NTS sequences (designated NTS-I and NTS-II for the 200- and 900-bp monomers, respectively); however, their coding sequences were nearly identical. The 5S rRNA genes were clustered in two chromosome loci, a major one corresponding to the NTS-I sites and a minor one corresponding to the NTS-II sites. The NTS-I sequence was variable among Leporinus spp., whereas the NTS-II was conserved among them and even in the related genus Schizodon. The distinct 5S rDNA arrays might characterize two 5S rRNA gene subfamilies that have been evolving independently in the genome.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular organization of 5S rDNA in fishes of the genus Brycon.

              There are few reports on the genomic organization of 5S rDNA in fish species. To characterize the 5S rDNA nucleotide sequence and chromosomal localization in the Neotropical fishes of the genus Brycon, 5S rDNA copies from seven species were generated by PCR. The nucleotide sequences of the coding region (5S rRNA gene) and the nontranscribed spacer (NTS) were determined, revealing that the 5S rRNA genes were highly conserved, while the NTSs were widely variable among the species analyzed. Moreover, two classes of NTS were detected in each species, characterized by base substitutions and insertions-deletions. Using fluorescence in situ hybridization (FISH), two 5S rDNA chromosome loci that could be related to the two 5S rDNA NTS classes were observed in at least one of the species studied. 5S rDNA sequencing and chromosomal localization permitted the characterization of Brycon spp. and suggest a higher similarity among some of them. The data obtained indicate that the 5S rDNA can be an useful genetic marker for species identification and evolutionary studies.
                Bookmark

                Author and article information

                Journal
                Comp Cytogenet
                Comp Cytogenet
                CompCytogen
                Comparative Cytogenetics
                Pensoft Publishers
                1993-0771
                1993-078X
                2015
                5 February 2015
                : 9
                : 1
                : 17-29
                Affiliations
                [1 ]Taiamã Ecological Station, Chico Mendes Biodiversity Conservation Institute, Mato Grosso, Brazil
                [2 ]Environmental Protection Area Meanders of the Araguaia river, Chico Mendes Biodiversity Conservation Institute, Mato Grosso, Brazil
                [3 ]Laboratory of Molecular Biodiversity and Cytogenetics, Department of Genetics and Evolution, Federal University of São Carlos, São Paulo, Brazil
                Author notes
                Corresponding author: Daniel Luis Zanella Kantek ( daniel_kantek@ 123456hotmail.com )

                Academic editor: R. Noleto

                Article
                10.3897/CompCytogen.v9i1.8488
                4387378
                0dfeff77-7f0a-4095-8b16-468e51875157
                Daniel Luis Zanella Kantek, Wellington Adriano Moreira Peres, Orlando Moreira-Filho

                This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 25 August 2014
                : 7 November 2014
                Categories
                Research Articles

                siluriformes,heptapteridae,chromosomes,5s and 18s rdna,cytotaxonomy

                Comments

                Comment on this article

                scite_

                Similar content128

                Cited by1

                Most referenced authors109