123
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      MD-2, a Molecule that Confers Lipopolysaccharide Responsiveness on Toll-like Receptor 4

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Toll-like receptor 4 (TLR4) is a mammalian homologue of Drosophila Toll, a leucine-rich repeat molecule that can trigger innate responses against pathogens. The TLR4 gene has recently been shown to be mutated in C3H/HeJ and C57BL/10ScCr mice, both of which are low responders to lipopolysaccharide (LPS). TLR4 may be a long-sought receptor for LPS. However, transfection of TLR4 does not confer LPS responsiveness on a recipient cell line, suggesting a requirement for an additional molecule. Here, we report that a novel molecule, MD-2, is requisite for LPS signaling of TLR4. MD-2 is physically associated with TLR4 on the cell surface and confers responsiveness to LPS. MD-2 is thus a link between TLR4 and LPS signaling. Identification of this new receptor complex has potential implications for understanding host defense, as well as pathophysiologic, mechanisms.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults.

          The cytokine-induced activation cascade of NF-kappaB in mammals and the activation of the morphogen dorsal in Drosophila embryos show striking structural and functional similarities (Toll/IL-1, Cactus/I-kappaB, and dorsal/NF-kappaB). Here we demonstrate that these parallels extend to the immune response of Drosophila. In particular, the intracellular components of the dorsoventral signaling pathway (except for dorsal) and the extracellular Toll ligand, spätzle, control expression of the antifungal peptide gene drosomycin in adults. We also show that mutations in the Toll signaling pathway dramatically reduce survival after fungal infection. Antibacterial genes are induced either by a distinct pathway involving the immune deficiency gene (imd) or by combined activation of both imd and dorsoventral pathways.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Innate immunity: impact on the adaptive immune response.

            For many years, innate immunity has been considered as a separate entity from the adaptive immune response and has been regarded to be of secondary importance in the hierarchy of immune functions. For the past few years, however, interest in innate immunity has grown enormously, so that now it is studied intensively in many laboratories that seek to integrate these two distinct types of immune function. Our intent in this review is to point out the similarities and differences in these two types of host response to infection, and to indicate our present level of understanding of how these can be integrated into a more complete description of the immune response.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Endotoxin-tolerant Mice Have Mutations in Toll-like Receptor 4 (Tlr4)

              Bacterial lipopolysaccharide (LPS) provokes a vigorous, generalized proinflammatory state in the infected host. Genetic regulation of this response has been localized to the Lps locus on mouse chromosome 4, through study of the C3H/HeJ and C57BL/10ScCr inbred strains. Both C3H/HeJ and C57BL/10ScCr mice are homozygous for a mutant Lps allele (Lpsd/d ) that confers hyporesponsiveness to LPS challenge, and therefore exhibit natural tolerance to its lethal effects. Genetic and physical mapping of 1,345 backcross progeny segregating this mutant phenotype confined Lps to a 0.9-cM interval spanning 1.7 Mb. Three transcription units were identified within the candidate interval, including Toll-like receptor 4 (Tlr4), part of a protein family with members that have been implicated in LPS-induced cell signaling. C3H/HeJ mice have a point mutation within the coding region of the Tlr4 gene, resulting in a nonconservative substitution of a highly conserved proline by histidine at codon 712, whereas C57BL/ 10ScCr mice exhibit a deletion of Tlr4. Identification of distinct mutations involving the same gene at the Lps locus in two different hyporesponsive inbred mouse strains strongly supports the hypothesis that altered Tlr4 function is responsible for endotoxin tolerance.
                Bookmark

                Author and article information

                Journal
                J Exp Med
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                7 June 1999
                : 189
                : 11
                : 1777-1782
                Affiliations
                From the Department of Immunology, Saga Medical School, Saga, Japan
                Author notes

                Address correspondence to Kensuke Miyake, Department of Immunology, Saga Medical School, Nabeshima, Saga 849-8501, Japan. Phone: 81-952-34-2256; Fax: 81-952-34-2049; E-mail: miyake@ 123456post.saga-med.ac.jp

                Article
                10.1084/jem.189.11.1777
                2193086
                10359581
                0e241250-3d5f-460a-a520-ccdb9a29e25b
                Copyright @ 1999
                History
                : 26 February 1999
                : 5 April 1999
                Categories
                Articles

                Medicine
                leucine-rich repeat,rp105,md-1,nuclear factor κb,signaling
                Medicine
                leucine-rich repeat, rp105, md-1, nuclear factor κb, signaling

                Comments

                Comment on this article