26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sox transcription in sarcosine utilization is controlled by Sigma 54 and SoxR in Bacillus thuringiensis HD73

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sarcosine oxidase catalyzes the oxidative demethylation of sarcosine to yield glycine, formaldehyde, and hydrogen peroxide. In this study, we analyzed the transcription and regulation of the sox locus, including the sarcosine oxidase-encoding genes in Bacillus thuringiensis (Bt). RT-PCR analysis revealed that the sox locus forms two opposing transcriptional units: soxB ( soxB/E/F/G/H/I) and soxR ( soxR/C/D/A). The typical −12/−24 consensus sequence was located 15 bp and 12 bp from the transcriptional start site (TSS) of soxB and soxC, respectively. Promoter- lacZ fusion assays showed that the soxB promoter is controlled by the Sigma 54 factor and is activated by the Sigma 54-dependent transcriptional regulator SoxR. SoxR also inhibits its own expression. Expression from the P soxCR promoter, which is responsible for the transcription of soxC, soxD, and soxA, is Sigma 54-dependent and requires SoxR. An 11-bp inverted repeat sequence was identified as SoxR binding site upstream of the soxB TSS. Purified SoxR specifically bound a DNA fragment containing this region. Mutation or deletion of this sequence abolished the transcriptional activities of soxB and soxC. Thus, SoxR binds to the same sequence to activate the transcription of soxB and soxC. Sarcosine utilization was abolished in soxB and soxR mutants, suggesting that the sox locus is essential for sarcosine utilization.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis--one species on the basis of genetic evidence.

          Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis are members of the Bacillus cereus group of bacteria, demonstrating widely different phenotypes and pathological effects. B. anthracis causes the acute fatal disease anthrax and is a potential biological weapon due to its high toxicity. B. thuringiensis produces intracellular protein crystals toxic to a wide number of insect larvae and is the most commonly used biological pesticide worldwide. B. cereus is a probably ubiquitous soil bacterium and an opportunistic pathogen that is a common cause of food poisoning. In contrast to the differences in phenotypes, we show by multilocus enzyme electrophoresis and by sequence analysis of nine chromosomal genes that B. anthracis should be considered a lineage of B. cereus. This determination is not only a formal matter of taxonomy but may also have consequences with respect to virulence and the potential of horizontal gene transfer within the B. cereus group.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis.

            Bacillus cereus is an opportunistic pathogen causing food poisoning manifested by diarrhoeal or emetic syndromes. It is closely related to the animal and human pathogen Bacillus anthracis and the insect pathogen Bacillus thuringiensis, the former being used as a biological weapon and the latter as a pesticide. B. anthracis and B. thuringiensis are readily distinguished from B. cereus by the presence of plasmid-borne specific toxins (B. anthracis and B. thuringiensis) and capsule (B. anthracis). But phylogenetic studies based on the analysis of chromosomal genes bring controversial results, and it is unclear whether B. cereus, B. anthracis and B. thuringiensis are varieties of the same species or different species. Here we report the sequencing and analysis of the type strain B. cereus ATCC 14579. The complete genome sequence of B. cereus ATCC 14579 together with the gapped genome of B. anthracis A2012 enables us to perform comparative analysis, and hence to identify the genes that are conserved between B. cereus and B. anthracis, and the genes that are unique for each species. We use the former to clarify the phylogeny of the cereus group, and the latter to determine plasmid-independent species-specific markers.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Catabolic repression of bacterial sporulation.

                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                12 July 2016
                2016
                : 6
                : 29141
                Affiliations
                [1 ]State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences , Beijing, China
                [2 ]College of Life Sciences, Northeast Agriculture University , Harbin, China
                Author notes
                Article
                srep29141
                10.1038/srep29141
                4941409
                27404799
                0ee2ae20-ac14-4058-b6f2-3f7dad0dd188
                Copyright © 2016, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 04 May 2016
                : 10 June 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article