0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nanomodification of Lightweight Fiber Reinforced Concrete with Micro Silica and Its Influence on the Constructive Quality Coefficient

      , , , , ,
      Materials
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A hypothesis was put forward that a nano-modifying additive of micro silica, which had a beneficial effect on achieving a perfect structure of heavy concrete, can also be effectively used in lightweight fiber-reinforced concrete. The nano-modifying additives of micro silica application in manufacturing lightweight fiber reinforced concrete products and structures can significantly enchain their strength characteristics without increasing their mass and consequently improve their design characteristics. The purpose of the work was to increase the structural quality coefficients for all types of strengths of lightweight fiber-reinforced concrete due to its modification with micro silica. The effect of nano-modifying additives of micro silica on the strength characteristics of lightweight fiber reinforced concrete was studied. The optimal amount of micro silica addition was experimentally confirmed and established of 10% of the cement mass. The coefficients of constructive quality for all experimentally determined strength characteristics of lightweight fiber-reinforced concrete modified with micro silica additives were calculated. The coefficient of constructive quality for tensile strength in bending of lightweight fiber reinforced concrete with additives was two and a half times higher than that of heavy concrete without additives and up to 37% higher than that of lightweight fiber-reinforced concrete without additives.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Influence of Glass Silica Waste Nano Powder on the Mechanical and Microstructure Properties of Alkali-Activated Mortars

          The recycling of millions of tons of glass bottle waste produced each year is far from optimal. In the present work, ground blast furnace slag (GBFS) was substituted in fly ash-based alkali-activated mortars (AAMs) for the purpose of preparing glass bottle waste nano-powder (BGWNP). The AAMs mixed with BGWNP were subsequently subjected to assessment in terms of their energy consumption, economic viability, and mechanical and chemical qualities. Besides affording AAMs better mechanical qualities and making them more durable, waste recycling was also observed to diminish the emissions of carbon dioxide. A more than 6% decrease in carbon dioxide emissions, an over 16% increase in compressive strength, better durability and lower water absorption were demonstrated by AAM consisting of 5% BGWNP as a GBFS substitute. By contrast, lower strength was exhibited by AAM comprising 10% BGWNP. The conclusion reached was that the AAMs produced with BGWNP attenuated the effects of global warming and thus were environmentally advantageous. This could mean that glass waste, inadequate for reuse in glass manufacturing, could be given a second life rather than being disposed of in landfills, which is significant as concrete remains the most commonplace synthetic material throughout the world.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Effects of fiber shape and distance on the pullout behavior of steel fibers embedded in ultra-high-performance concrete

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found
              Is Open Access

              Influence of nano materials on flexural behavior and compressive strength of concrete

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                MATEG9
                Materials
                Materials
                MDPI AG
                1996-1944
                December 2021
                November 30 2021
                : 14
                : 23
                : 7347
                Article
                10.3390/ma14237347
                0ef52756-7714-41ed-96e5-3468aaf960c6
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article