1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mammalian antiviral systems directed by small RNA

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There are strong incentives for human populations to develop antiviral systems. Similarly, genomes that encode antiviral systems have had strong selective advantages. Protein-guided immune systems, which have been well studied in mammals, are necessary for survival in our virus-laden environments. Small RNA–directed antiviral immune systems suppress invasion of cells by non-self genetic material via complementary base pairing with target sequences. These RNA silencing-dependent systems operate in diverse organisms. In mammals, there is strong evidence that microRNAs (miRNAs) regulate endogenous genes important for antiviral immunity, and emerging evidence that virus-derived nucleic acids can be directly targeted by small interfering RNAs (siRNAs), PIWI-interacting RNAs (piRNAs), and transfer RNAs (tRNAs) for protection in some contexts. In this review, we summarize current knowledge of the antiviral functions of each of these small RNA types and consider their conceptual and mechanistic overlap with innate and adaptive protein-guided immunity, including mammalian antiviral cytokines, as well as the prokaryotic RNA-guided immune system, CRISPR. In light of recent successes in delivery of RNA for antiviral purposes, most notably for vaccination, we discuss the potential for development of small noncoding RNA–directed antiviral therapeutics and prophylactics.

          Author summary

          Viruses are all around us and are likely inside some of the reader’s cells at this moment. Organisms are accommodated to this reality and encode various immune systems to limit virus replication. In mammals, the best studied immune systems are directed by proteins that specifically recognize viruses. These include diverse antibodies and T cell receptors, which recognize viral proteins, and pattern recognition receptors, some of which can recognize viral nucleic acids. In other organisms, including bacteria, immune systems directed by small RNAs are also well known; spacer-derived guide RNAs in CRISPR/Cas immune systems are one prominent example. The small RNAs directing these systems derive their specificity via complementary base pairing with their targets, which include both host and viral nucleic acids. Rather than having “traded in” these systems for more advanced protein-directed systems, increasing evidence supports the perspective that small RNA–directed immune systems remain active in mammalian antiviral immunity in some contexts. Here, we review what is known so far about the emerging roles of mammalian siRNAs, miRNAs, piRNAs, and tRNAs in directing immunity to viruses.

          Related collections

          Most cited references134

          • Record: found
          • Abstract: found
          • Article: not found

          MicroRNAs: genomics, biogenesis, mechanism, and function.

          MicroRNAs (miRNAs) are endogenous approximately 22 nt RNAs that can play important regulatory roles in animals and plants by targeting mRNAs for cleavage or translational repression. Although they escaped notice until relatively recently, miRNAs comprise one of the more abundant classes of gene regulatory molecules in multicellular organisms and likely influence the output of many protein-coding genes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells.

            Exosomes are vesicles of endocytic origin released by many cells. These vesicles can mediate communication between cells, facilitating processes such as antigen presentation. Here, we show that exosomes from a mouse and a human mast cell line (MC/9 and HMC-1, respectively), as well as primary bone marrow-derived mouse mast cells, contain RNA. Microarray assessments revealed the presence of mRNA from approximately 1300 genes, many of which are not present in the cytoplasm of the donor cell. In vitro translation proved that the exosome mRNAs were functional. Quality control RNA analysis of total RNA derived from exosomes also revealed presence of small RNAs, including microRNAs. The RNA from mast cell exosomes is transferable to other mouse and human mast cells. After transfer of mouse exosomal RNA to human mast cells, new mouse proteins were found in the recipient cells, indicating that transferred exosomal mRNA can be translated after entering another cell. In summary, we show that exosomes contain both mRNA and microRNA, which can be delivered to another cell, and can be functional in this new location. We propose that this RNA is called "exosomal shuttle RNA" (esRNA).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs.

              MicroRNAs (miRNAs) are a class of noncoding RNAs that post-transcriptionally regulate gene expression in plants and animals. To investigate the influence of miRNAs on transcript levels, we transfected miRNAs into human cells and used microarrays to examine changes in the messenger RNA profile. Here we show that delivering miR-124 causes the expression profile to shift towards that of brain, the organ in which miR-124 is preferentially expressed, whereas delivering miR-1 shifts the profile towards that of muscle, where miR-1 is preferentially expressed. In each case, about 100 messages were downregulated after 12 h. The 3' untranslated regions of these messages had a significant propensity to pair to the 5' region of the miRNA, as expected if many of these messages are the direct targets of the miRNAs. Our results suggest that metazoan miRNAs can reduce the levels of many of their target transcripts, not just the amount of protein deriving from these transcripts. Moreover, miR-1 and miR-124, and presumably other tissue-specific miRNAs, seem to downregulate a far greater number of targets than previously appreciated, thereby helping to define tissue-specific gene expression in humans.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                PLoS Pathogens
                Public Library of Science (San Francisco, CA USA )
                1553-7366
                1553-7374
                16 December 2021
                December 2021
                : 17
                : 12
                : e1010091
                Affiliations
                [1 ] Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
                [2 ] Genome Immunobiology RIKEN Hakubi Research Team, Cluster for Pioneering Research, RIKEN, Yokohama, Japan
                [3 ] Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
                Yale University School of Medicine, UNITED STATES
                Author notes

                The authors have declared that no competing interests exist.

                Author information
                https://orcid.org/0000-0002-5094-8882
                Article
                PPATHOGENS-D-21-01836
                10.1371/journal.ppat.1010091
                8675686
                34914813
                0f237244-d680-4f51-85d1-b95db6e09b6a
                © 2021 Takahashi et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                Page count
                Figures: 2, Tables: 3, Pages: 18
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/501100004298, Secom Science and Technology Foundation;
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/501100004298, Secom Science and Technology Foundation;
                Award Recipient :
                TT and NFP received funding from the SECOM Foundation ( www.secomzaidan.jp) and JSPS KAKENHI grant 18K15178 (TT) and JP20H05682 (NFP). SMH was supported by the RIKEN Special Postdoctoral Researcher Program. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Review
                Biology and life sciences
                Genetics
                Gene expression
                Gene regulation
                Small interfering RNA
                Biology and life sciences
                Biochemistry
                Nucleic acids
                RNA
                Non-coding RNA
                Small interfering RNA
                Biology and life sciences
                Biochemistry
                Nucleic acids
                RNA
                Non-coding RNA
                Natural antisense transcripts
                MicroRNAs
                Biology and life sciences
                Genetics
                Gene expression
                Gene regulation
                MicroRNAs
                Biology and life sciences
                Biochemistry
                Nucleic acids
                RNA
                Non-coding RNA
                Transfer RNA
                Biology and life sciences
                Genetics
                Epigenetics
                RNA interference
                Biology and life sciences
                Genetics
                Gene expression
                RNA interference
                Biology and life sciences
                Genetics
                Genetic interference
                RNA interference
                Biology and life sciences
                Biochemistry
                Nucleic acids
                RNA
                RNA interference
                Biology and Life Sciences
                Immunology
                Immune Response
                Antiviral Immune Response
                Medicine and Health Sciences
                Immunology
                Immune Response
                Antiviral Immune Response
                Biology and Life Sciences
                Microbiology
                Virology
                Viral Replication
                Biology and Life Sciences
                Genetics
                Genomics
                Animal Genomics
                Mammalian Genomics
                Biology and life sciences
                Organisms
                Viruses
                RNA viruses
                Orthomyxoviruses
                Influenza viruses
                Influenza A virus
                Biology and life sciences
                Microbiology
                Medical microbiology
                Microbial pathogens
                Viral pathogens
                Orthomyxoviruses
                Influenza viruses
                Influenza A virus
                Medicine and health sciences
                Pathology and laboratory medicine
                Pathogens
                Microbial pathogens
                Viral pathogens
                Orthomyxoviruses
                Influenza viruses
                Influenza A virus
                Biology and life sciences
                Organisms
                Viruses
                Viral pathogens
                Orthomyxoviruses
                Influenza viruses
                Influenza A virus

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article