28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Optimal Thawing of Cryopreserved Peripheral Blood Mononuclear Cells for Use in High-Throughput Human Immune Monitoring Studies

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cryopreserved peripheral blood mononuclear cells (PBMC) constitute an important component of immune monitoring studies as they allow for efficient batch- testing of samples as well as for the validation and extension of original studies in the future. In this study, we systematically test the permutations of PBMC thawing practices commonly employed in the field and identify conditions that are high and low risk for the viability of PBMC and their functionality in downstream ELISPOT assays. The study identifies the addition of ice-chilled washing media to thawed cells at the same temperature as being a high risk practice, as it yields significantly lower viability and functionality of recovered PBMC when compared to warming the cryovials to 37 °C and adding a warm washing medium. We found thawed PBMC in cryovials could be kept up to 30 minutes at 37 °C in the presence of DMSO before commencement of washing, which surprisingly identifies exposure to DMSO as a low risk step during the thawing process. This latter finding is of considerable practical relevance since it permits batch-thawing of PBMC in high-throughput immune monitoring environments.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Influence of Prior Influenza Vaccination on Antibody and B-Cell Responses

          Currently two vaccines, trivalent inactivated influenza vaccine (TIV) and live attenuated influenza vaccine (LAIV), are licensed in the USA. Despite previous studies on immune responses induced by these two vaccines, a comparative study of the influence of prior influenza vaccination on serum antibody and B-cell responses to new LAIV or TIV vaccination has not been reported. During the 2005/6 influenza season, we quantified the serum antibody and B-cell responses to LAIV or TIV in adults with differing influenza vaccination histories in the prior year: LAIV, TIV, or neither. Blood samples were collected on days 0, 7–9 and 21–35 after immunization and used for serum HAI assay and B-cell assays. Total and influenza-specific circulating IgG and IgA antibody secreting cells (ASC) in PBMC were detected by direct ELISPOT assay. Memory B cells were also tested by ELISPOT after polyclonal stimulation of PBMC in vitro. Serum antibody, effector, and memory B-cell responses were greater in TIV recipients than LAIV recipients. Prior year TIV recipients had significantly higher baseline HAI titers, but lower HAI response after vaccination with either TIV or LAIV, and lower IgA ASC response after vaccination with TIV than prior year LAIV or no vaccination recipients. Lower levels of baseline HAI titer were associated with a greater fold-increase of HAI titer and ASC number after vaccination, which also differed by type of vaccine. Our findings suggest that the type of vaccine received in the prior year affects the serum antibody and the B-cell responses to subsequent vaccination. In particular, prior year TIV vaccination is associated with sustained higher HAI titer one year later but lower antibody response to new LAIV or TIV vaccination, and a lower effector B-cell response to new TIV but not LAIV vaccination.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Optimization and limitations of use of cryopreserved peripheral blood mononuclear cells for functional and phenotypic T-cell characterization.

            The goals of this study were to optimize processing methods of cryopreserved peripheral blood mononuclear cells (PBMC) for immunological assays, identify acceptance parameters for the use of cryopreserved PBMC for functional and phenotypic assays, and to define limitations of the information obtainable with cryopreserved PBMC. Blood samples from 104 volunteers (49 human immunodeficiency virus-infected and 55 uninfected) were used to assess lymphocyte proliferation in response to tetanus, candida, and pokeweed-mitogen stimulation and to enumerate CD4(+) and CD8(+) T cells and T-cell subpopulations by flow cytometry. We determined that slowly diluting the thawed PBMC significantly improved viable cell recovery, whereas the use of benzonase improved cell recovery only sometimes. Cell storage in liquid nitrogen for up to 15 months did not affect cell viability, recovery, or the results of lymphocyte proliferation assays (LPA) and flow cytometry assays. Storage at -70 degrees C for < or =3 weeks versus storage in liquid nitrogen before shipment on dry ice did not affect cell viability, recovery, or flow cytometric results. Storage at -70 degrees C was associated with slightly higher LPA results with pokeweed-mitogen but not with microbial antigens. Cell viability of 75% was the acceptance parameter for LPA. No other acceptance parameters were found for LPA or flow cytometry assay results for cryopreserved PBMC. Under optimized conditions, LPA and flow cytometry assay results for cryopreserved and fresh PBMC were highly correlated, with the exception of phenotypic assays that used CD45RO or CD62L markers, which seemed labile to freezing and thawing.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Age-related impaired type 1 T cell responses to influenza: reduced activation ex vivo, decreased expansion in CTL culture in vitro, and blunted response to influenza vaccination in vivo in the elderly.

              The objective of this study was to analyze the changes in the type 1 T cell response, including the CD4+ Th1 and CD8+ T cell responses, to influenza in the elderly compared with those in young adults. PBMC activated ex vivo with influenza virus exhibited an age-related decline in type 1 T cell response, shown by the decline in the frequency of IFN-gamma-secreting memory T cells specific for influenza (IFN-gamma+ ISMT) using ELISPOT or intracellular cytokine staining. The reduced frequency of IFN-gamma+ ISMT was accompanied by a reduced level of IFN-gamma secretion per cell in elderly subjects. Tetramer staining, combined with IFN-gamma ELISPOT, indicated that the decline in IFN-gamma+, influenza M1-peptide-specific T cells was not due to attrition of the T cell repertoire, but, rather, to the functional loss of ISMT with age. In addition, the decline in type 1 T cell response was not due to an increase in Th2 response or defects in APCs from the elderly. The expansion of influenza-specific CD8+ T cells in CTL cultures was reduced in the elderly. Compared with young subjects, frail elderly subjects also exhibited a blunted and somewhat delayed type 1 T cell response to influenza vaccination, which correlated positively with the reduced IgG1 subtype and the total Ab response. Taken together, these data demonstrate that there is a decline in the type 1 T cell response to influenza with age that may help explain the age-related decline in vaccine efficacy and the increases in influenza morbidity and mortality.
                Bookmark

                Author and article information

                Journal
                Cells
                Cells
                cells
                Cells
                MDPI
                2073-4409
                25 July 2012
                September 2012
                : 1
                : 3
                : 313-324
                Affiliations
                Author notes
                [* ] Author to whom correspondence should be addressed; Email: Ramu.Subbramanian@ 123456immunospot.com .
                Article
                cells-01-00313
                10.3390/cells1030313
                3901099
                24710478
                0f28dbd5-599f-4fd1-bf41-a97d1cd17903
                © 2012 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 07 May 2012
                : 29 June 2012
                : 03 July 2012
                Categories
                Article

                elispot,pbmc,t cells,cryopreservation,dmso
                elispot, pbmc, t cells, cryopreservation, dmso

                Comments

                Comment on this article