107
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Antibody Persistence through 6 Months after the Second Dose of mRNA-1273 Vaccine for Covid-19

      letter
      , Ph.D. , Ph.D. , Ph.D. , M.S., , Ph.D., , Ph.D., , D.O., , M.D., , M.D., , B.S., , M.S., , B.S., , M.D. , Ph.D., , M.D., , M.D., , B.S., , M.D., , Ph.D. , Ph.D., , M.D., M.P.H., , B.S.N., M.S., , Ph.D., , M.D. , M.D., M.P.H. , M.D. , M.Sc., , M.D. , M.S., , M.S. *
      The New England Journal of Medicine
      Massachusetts Medical Society
      Keyword part (code): 18Keyword part (keyword): Infectious DiseaseKeyword part (code): 18_2Keyword part (keyword): VaccinesKeyword part (code): 18_12Keyword part (keyword): Coronavirus , 18, Infectious Disease, Keyword part (code): 18_2Keyword part (keyword): VaccinesKeyword part (code): 18_12Keyword part (keyword): Coronavirus , 18_2, Vaccines, 18_12, Coronavirus

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To the Editor: Interim results from a phase 3 trial of the Moderna mRNA-1273 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine indicated 94% efficacy in preventing coronavirus disease 2019 (Covid-19). 1 The durability of protection is currently unknown. We describe mRNA1273-elicited binding and neutralizing antibodies in 33 healthy adult participants in an ongoing phase 1 trial, 2-4 stratified according to age, at 180 days after the second dose of 100 μg (day 209). Antibody activity remained high in all age groups at day 209. Binding antibodies, measured by means of an enzyme-linked immunosorbent assay against SARS-CoV-2 spike receptor–binding domain, 2 had geometric mean end-point titers (GMTs) of 92,451 (95% confidence interval [CI], 57,148 to 149,562) in participants 18 to 55 years of age, 62,424 (95% CI, 36,765 to 105,990) in those 56 to 70 years of age, and 49,373 (95% CI, 25,171 to 96,849) in those 71 years of age or older. Nearly all participants had detectable activity in a pseudovirus neutralization assay, 2 with 50% inhibitory dilution (ID50) GMTs of 80 (95% CI, 40 to 135), 57 (95% CI, 30 to 106), and 59 (95% CI, 29 to 121), respectively. On the more sensitive live-virus focus-reduction neutralization mNeonGreen test, 4 all the participants had detectable activity, with ID50 GMTs of 361 (95% CI, 258 to 504), 171 (95% CI, 95 to 307), and 131 (95% CI, 69 to 251), respectively; these GMTs were lower in participants 56 to 70 years of age (P=0.03) and in those 71 years of age or older (P=0.005) than in those 18 to 55 years of age (Figure 1; also see the Supplementary Appendix, available with the full text of this letter at NEJM.org). The estimated half-life of binding antibodies after day 43 for all the participants was 52 days (95% CI, 46 to 58) calculated with the use of an exponential decay model, which assumes a steady decay rate over time, and 109 days (95% CI, 92 to 136) calculated with the use of a power-law model (at day 119), which assumes that decay rates decrease over time. The neutralizing antibody half-life estimates in the two models were 69 days (95% CI, 61 to 76) and 173 days (95% CI, 144 to 225) for pseudovirus neutralization and 66 days (95% CI, 59 to 72) and 182 days (95% CI, 153 to 254) for live-virus neutralization. As measured by ΔAICc (change in Akaike information criterion, corrected for small sample size), the best fit for binding and neutralization were the power-law and exponential decay models, respectively (see the Supplementary Appendix). These results are consistent with published observations of convalescent patients with Covid-19 through 8 months after symptom onset. 5 Although the antibody titers and assays that best correlate with vaccine efficacy are not currently known, antibodies that were elicited by mRNA-1273 persisted through 6 months after the second dose, as detected by three distinct serologic assays. Ongoing studies are monitoring immune responses beyond 6 months as well as determining the effect of a booster dose to extend the duration and breadth of activity against emerging viral variants. Our data show antibody persistence and thus support the use of this vaccine in addressing the Covid-19 pandemic.

          Related collections

          Most cited references5

          • Record: found
          • Abstract: found
          • Article: not found

          Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine

          Abstract Background Vaccines are needed to prevent coronavirus disease 2019 (Covid-19) and to protect persons who are at high risk for complications. The mRNA-1273 vaccine is a lipid nanoparticle–encapsulated mRNA-based vaccine that encodes the prefusion stabilized full-length spike protein of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes Covid-19. Methods This phase 3 randomized, observer-blinded, placebo-controlled trial was conducted at 99 centers across the United States. Persons at high risk for SARS-CoV-2 infection or its complications were randomly assigned in a 1:1 ratio to receive two intramuscular injections of mRNA-1273 (100 μg) or placebo 28 days apart. The primary end point was prevention of Covid-19 illness with onset at least 14 days after the second injection in participants who had not previously been infected with SARS-CoV-2. Results The trial enrolled 30,420 volunteers who were randomly assigned in a 1:1 ratio to receive either vaccine or placebo (15,210 participants in each group). More than 96% of participants received both injections, and 2.2% had evidence (serologic, virologic, or both) of SARS-CoV-2 infection at baseline. Symptomatic Covid-19 illness was confirmed in 185 participants in the placebo group (56.5 per 1000 person-years; 95% confidence interval [CI], 48.7 to 65.3) and in 11 participants in the mRNA-1273 group (3.3 per 1000 person-years; 95% CI, 1.7 to 6.0); vaccine efficacy was 94.1% (95% CI, 89.3 to 96.8%; P<0.001). Efficacy was similar across key secondary analyses, including assessment 14 days after the first dose, analyses that included participants who had evidence of SARS-CoV-2 infection at baseline, and analyses in participants 65 years of age or older. Severe Covid-19 occurred in 30 participants, with one fatality; all 30 were in the placebo group. Moderate, transient reactogenicity after vaccination occurred more frequently in the mRNA-1273 group. Serious adverse events were rare, and the incidence was similar in the two groups. Conclusions The mRNA-1273 vaccine showed 94.1% efficacy at preventing Covid-19 illness, including severe disease. Aside from transient local and systemic reactions, no safety concerns were identified. (Funded by the Biomedical Advanced Research and Development Authority and the National Institute of Allergy and Infectious Diseases; COVE ClinicalTrials.gov number, NCT04470427.)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An mRNA Vaccine against SARS-CoV-2 — Preliminary Report

            Abstract Background The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in late 2019 and spread globally, prompting an international effort to accelerate development of a vaccine. The candidate vaccine mRNA-1273 encodes the stabilized prefusion SARS-CoV-2 spike protein. Methods We conducted a phase 1, dose-escalation, open-label trial including 45 healthy adults, 18 to 55 years of age, who received two vaccinations, 28 days apart, with mRNA-1273 in a dose of 25 μg, 100 μg, or 250 μg. There were 15 participants in each dose group. Results After the first vaccination, antibody responses were higher with higher dose (day 29 enzyme-linked immunosorbent assay anti–S-2P antibody geometric mean titer [GMT], 40,227 in the 25-μg group, 109,209 in the 100-μg group, and 213,526 in the 250-μg group). After the second vaccination, the titers increased (day 57 GMT, 299,751, 782,719, and 1,192,154, respectively). After the second vaccination, serum-neutralizing activity was detected by two methods in all participants evaluated, with values generally similar to those in the upper half of the distribution of a panel of control convalescent serum specimens. Solicited adverse events that occurred in more than half the participants included fatigue, chills, headache, myalgia, and pain at the injection site. Systemic adverse events were more common after the second vaccination, particularly with the highest dose, and three participants (21%) in the 250-μg dose group reported one or more severe adverse events. Conclusions The mRNA-1273 vaccine induced anti–SARS-CoV-2 immune responses in all participants, and no trial-limiting safety concerns were identified. These findings support further development of this vaccine. (Funded by the National Institute of Allergy and Infectious Diseases and others; mRNA-1273 ClinicalTrials.gov number, NCT04283461).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection

              Understanding immune memory to SARS-CoV-2 is critical for improving diagnostics and vaccines, and for assessing the likely future course of the COVID-19 pandemic. We analyzed multiple compartments of circulating immune memory to SARS-CoV-2 in 254 samples from 188 COVID-19 cases, including 43 samples at ≥ 6 months post-infection. IgG to the Spike protein was relatively stable over 6+ months. Spike-specific memory B cells were more abundant at 6 months than at 1 month post symptom onset. SARS-CoV-2-specific CD4+ T cells and CD8+ T cells declined with a half-life of 3-5 months. By studying antibody, memory B cell, CD4+ T cell, and CD8+ T cell memory to SARS-CoV-2 in an integrated manner, we observed that each component of SARS-CoV-2 immune memory exhibited distinct kinetics.
                Bookmark

                Author and article information

                Journal
                N Engl J Med
                N Engl J Med
                nejm
                The New England Journal of Medicine
                Massachusetts Medical Society
                0028-4793
                1533-4406
                10 June 2021
                10 June 2021
                : 384
                : 23
                : 2259-2261
                Affiliations
                National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD
                Emory University School of Medicine, Decatur, GA msuthar@ 123456emory.edu
                Emmes Company, Rockville, MD
                NIAID, Bethesda, MD
                Emory University School of Medicine, Decatur, GA
                NIAID, Bethesda, MD
                Kaiser Permanente Washington Health Research Institute, Seattle, WA
                University of Maryland School of Medicine, Baltimore, MD
                Moderna, Cambridge, MA
                Emmes Company, Rockville, MD
                Author notes
                [*]

                The mRNA-1273 Study Group members are listed in the Supplementary Appendix, available with the full text of this letter at NEJM.org.

                Drs. Doria-Rose and Suthar contributed equally to this letter.

                Author information
                http://orcid.org/0000-0002-5731-3054
                http://orcid.org/0000-0001-7615-8320
                http://orcid.org/0000-0002-1576-4420
                http://orcid.org/0000-0002-4879-4941
                http://orcid.org/0000-0002-1785-0218
                Article
                NJ202106103842317
                10.1056/NEJMc2103916
                8524784
                33822494
                0fa667a2-040f-4f4c-8a49-392092b48329
                Copyright © 2021 Massachusetts Medical Society. All rights reserved.

                This article is made available via the PMC Open Access Subset for unrestricted re-use, except commercial resale, and analyses in any form or by any means with acknowledgment of the original source. These permissions are granted for the duration of the Covid-19 pandemic or until revoked in writing. Upon expiration of these permissions, PMC is granted a license to make this article available via PMC and Europe PMC, subject to existing copyright protections.

                History
                Funding
                Funded by: Covid-Catalyst-I3 Funds from the Woodruff Health Sciences Center and Emory School of Medicine, FundRef http://dx.doi.org/10.13039/100006939;
                Funded by: North Carolina Policy Collaboratory at the University of North Carolina at Chapel Hill, FundRef http://dx.doi.org/10.13039/100007890;
                Funded by: North Carolina Coronavirus Relief Fund, FundRef ;
                Funded by: Coalition for Epidemic Preparedness Innovations, FundRef http://dx.doi.org/10.13039/100016302;
                Funded by: Georgia Research Alliance, FundRef http://dx.doi.org/10.13039/100008065;
                Funded by: National Institute of Allergy and Infectious Diseases, FundRef http://dx.doi.org/10.13039/100000060;
                Award ID: AI149644
                Award ID: HHSN272201500002C
                Award ID: P51 OD011132
                Award ID: UM1AI148373
                Award ID: UM1AI148576
                Award ID: UM1AI148684
                Award ID: UM1Al148684-01S1
                Funded by: National Center for Advancing Translational Sciences, FundRef http://dx.doi.org/10.13039/100006108;
                Award ID: UL1 TR002243
                Funded by: Dolly Parton COVID-19 Research Fund, FundRef http://dx.doi.org/10.13039/100006537;
                Funded by: Emory Executive Vice President for Health Affairs Synergy Fund award, FundRef http://dx.doi.org/10.13039/100006939;
                Funded by: Center for Childhood Infections and Vaccines, FundRef http://dx.doi.org/10.13039/100006939;
                Funded by: Children’s Healthcare of Atlanta, FundRef ;
                Categories
                Correspondence

                Comments

                Comment on this article