7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Isolation, characterization, and application of a novel polyvalent lytic phage STWB21 against typhoidal and nontyphoidal Salmonella spp.

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Salmonella is one of the common causal agents of bacterial gastroenteritis-related morbidity and mortality among children below 5 years and the elderly populations. Salmonellosis in humans is caused mainly by consuming contaminated food originating from animals. The genus Salmonella has several serovars, and many of them are recently reported to be resistant to multiple drugs. Therefore, isolation of lytic Salmonella bacteriophages in search of bactericidal activity has received importance. In this study, a Salmonella phage STWB21 was isolated from a lake water sample and found to be a novel lytic phage with promising potential against the host bacteria Salmonella typhi. However, some polyvalence was observed in their broad host range. In addition to S. typhi, the phage STWB21 was able to infect S. paratyphi, S. typhimurium, S. enteritidis, and a few other bacterial species such as Sh. flexneri 2a, Sh. flexneri 3a, and ETEC. The newly isolated phage STWB21 belongs to the Siphoviridae family with an icosahedral head and a long flexible non-contractile tail. Phage STWB21 is relatively stable under a wide range of pH (4–11) and temperatures (4°C–50°C) for different Salmonella serovars. The latent period and burst size of phage STWB21 against S. typhi were 25 min and 161 plaque-forming units per cell. Since Salmonella is a foodborne pathogen, the phage STWB21 was applied to treat a 24 h biofilm formed in onion and milk under laboratory conditions. A significant reduction was observed in the bacterial population of S. typhi biofilm in both cases. Phage STWB21 contained a dsDNA of 112,834 bp in length, and the GC content was 40.37%. Also, genomic analysis confirmed the presence of lytic genes and the absence of any lysogeny or toxin genes. Overall, the present study reveals phage STWB21 has a promising ability to be used as a biocontrol agent of Salmonella spp. and proposes its application in food industries.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: not found
          • Article: not found

          Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis

            The spread of antibiotic-resistant bacteria poses a substantial threat to morbidity and mortality worldwide. Due to its large public health and societal implications, multidrug-resistant tuberculosis has been long regarded by WHO as a global priority for investment in new drugs. In 2016, WHO was requested by member states to create a priority list of other antibiotic-resistant bacteria to support research and development of effective drugs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence.

              We describe a program, tRNAscan-SE, which identifies 99-100% of transfer RNA genes in DNA sequence while giving less than one false positive per 15 gigabases. Two previously described tRNA detection programs are used as fast, first-pass prefilters to identify candidate tRNAs, which are then analyzed by a highly selective tRNA covariance model. This work represents a practical application of RNA covariance models, which are general, probabilistic secondary structure profiles based on stochastic context-free grammars. tRNAscan-SE searches at approximately 30 000 bp/s. Additional extensions to tRNAscan-SE detect unusual tRNA homologues such as selenocysteine tRNAs, tRNA-derived repetitive elements and tRNA pseudogenes.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                22 August 2022
                2022
                : 13
                : 980025
                Affiliations
                [1] 1Division of Electron Microscopy, ICMR-National Institute of Cholera and Enteric Diseases , Kolkata, West Bengal, India
                [2] 2Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases , Kolkata, West Bengal, India
                Author notes

                Edited by: Alicja Wegrzyn, Institute of Biochemistry and Biophysics (PAN), Poland

                Reviewed by: Ahmed Askora, Zagazig University, Egypt; Josefina León-Félix, Centro de Investigación en Alimentación y Desarrollo (CIAD), Mexico

                This article was submitted to Phage Biology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2022.980025
                9441917
                36071966
                0fce501c-941a-4b3f-91f6-c3c04ad0f321
                Copyright © 2022 Mondal, Mallick, Dutta and Dutta.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 28 June 2022
                : 25 July 2022
                Page count
                Figures: 9, Tables: 3, Equations: 0, References: 61, Pages: 14, Words: 8371
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                salmonella,lytic,bacteriophage,biofilm,onion
                Microbiology & Virology
                salmonella, lytic, bacteriophage, biofilm, onion

                Comments

                Comment on this article