2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A variety of bacterial aetiologies in the lower respiratory tract at patients with endobronchial tuberculosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recently, our understanding of the elusive bacterial communities in the lower respiratory tract and their role in chronic lung disease has increased significantly. However, little is known about the respiratory microorganisms in patients with endobronchial tuberculosis (EBTB), which is a chronic inflammatory disease characterized by destruction of the tracheobronchial tree due to Mycobacterium tuberculosis (MTB) infection. We retrospectively reviewed data for histopathologically and microbiologically confirmed EBTB patients diagnosed at a tertiary referral hospital in South Korea between January 2013 and January 2019. Bacterial cultures were performed on bronchial washing from these patients at the time of EBTB diagnosis. A total of 216 patients with EBTB were included in the study. The median age was 73 years and 142 (65.7%) patients were female. Bacteria were detected in 42 (19.4%) patients. Additionally, bacterial co-infection was present in 6 (2.8%) patients. Apart from MTB, the most common microorganisms identified were Staphylococcus aureus (n = 14, 33.3%) followed by Klebsiella species (n = 12, 28.6%; 10 Klebsiella pneumoniae, 2 Klebsiella oxytoca), Streptococcus species (n = 5, 11.9%), Enterobacter species (n = 4, 9.5%), and Pseudomonas aeruginosa (n = 3, 7.1%). A variety of microorganisms were isolated from the bronchial washing indicating that changes in microorganism composition occur in the airways of patients with EBTB. Further studies are needed to investigate the clinical significance of this finding.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          The Microbiome and the Respiratory Tract.

          Although the notion that "the normal lung is free from bacteria" remains common in textbooks, it is virtually always stated without citation or argument. The lungs are constantly exposed to diverse communities of microbes from the oropharynx and other sources, and over the past decade, novel culture-independent techniques of microbial identification have revealed that the lungs, previously considered sterile in health, harbor diverse communities of microbes. In this review, we describe the topography and population dynamics of the respiratory tract, both in health and as altered by acute and chronic lung disease. We provide a survey of current techniques of sampling, sequencing, and analysis of respiratory microbiota and review technical challenges and controversies in the field. We review and synthesize what is known about lung microbiota in various diseases and identify key lessons learned across disease states.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The innate immune function of airway epithelial cells in inflammatory lung disease.

            The airway epithelium is now considered to be central to the orchestration of pulmonary inflammatory and immune responses, and is also key to tissue remodelling. It acts as the first barrier in the defence against a wide range of inhaled challenges, and is critically involved in the regulation of both innate and adaptive immune responses to these challenges. Recent progress in our understanding of the developmental regulation of this tissue, the differentiation pathways, recognition of pathogens and antimicrobial responses is now exploited to help understand how epithelial cell function and dysfunction contributes to the pathogenesis of a variety of inflammatory lung diseases. Herein, advances in our knowledge of the biology of airway epithelium, as well as its role and (dys)function in asthma, chronic obstructive pulmonary fibrosis and cystic fibrosis will be discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microbiologic determinants of exacerbation in chronic obstructive pulmonary disease.

              The culture of bronchial secretions from the lower airway has been reported to be positive for potentially pathogenic microorganisms (PPMs) in patients with stable chronic obstructive pulmonary disease (COPD), but the determinants and effects of this bacterial load in the airway are not established. To determine the bronchial microbial pattern in COPD and its relationship with exacerbation, we pooled analysis of crude data from studies that used protected specimen brush sampling, with age, sex, smoking, lung function, and microbiologic features of the lower airway as independent variables and exacerbation as the outcome, using logistic regression modeling. Of 337 study participants, 70 were healthy, 181 had stable COPD, and 86 had exacerbated COPD. Differences in the microbial characteristics in the participating laboratories were not statistically significant. A cutoff point of 10(2) colony-forming units (CFU) per milliliter or greater for the identification of abnormal positive culture results for PPMs was defined using the 95th percentile in the pooled analysis of healthy individuals. Bronchial colonization of 10(2) CFU/mL or greater by PPMs was found in 53 patients with stable COPD (29%) and in 46 patients with exacerbated COPD (54%) (P<.001, chi(2) test), with a predominance of Haemophilus influenzae and Pseudomonas aeruginosa. Higher microbial loads were associated with exacerbation and showed a statistically significant dose-response relationship after adjustment for covariates (odds ratio, 3.62; 95% confidence interval, 1.47-8.90), but P aeruginosa persisted as a statistically significant risk factor after adjustment for microbial load (odds ratio, 11.12; 95% confidence interval, 1.17-105.82). One quarter of the patients with COPD are colonized by PPMs during their stable periods. Exacerbation is associated with the overgrowth of PPMs and with the appearance of P aeruginosa in the lower airway, which is associated with exacerbation symptoms independent of load.
                Bookmark

                Author and article information

                Contributors
                Role: Data curationRole: Formal analysisRole: Writing – original draft
                Role: Data curationRole: MethodologyRole: Writing – review & editing
                Role: Investigation
                Role: Investigation
                Role: Investigation
                Role: Investigation
                Role: Writing – review & editing
                Role: Data curation
                Role: ConceptualizationRole: Formal analysisRole: MethodologyRole: Project administrationRole: Writing – original draft
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                25 June 2020
                2020
                : 15
                : 6
                : e0234558
                Affiliations
                [1 ] Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
                [2 ] Department of Laboratory Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
                [3 ] Department of Pathology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
                The University of Georgia, UNITED STATES
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Author information
                http://orcid.org/0000-0003-3565-3426
                http://orcid.org/0000-0002-8449-0195
                Article
                PONE-D-20-02543
                10.1371/journal.pone.0234558
                7316277
                32584852
                101cee40-3e00-4650-8367-c81dacbc851c
                © 2020 Kim et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 28 January 2020
                : 27 May 2020
                Page count
                Figures: 0, Tables: 4, Pages: 10
                Funding
                The authors received no specific funding for this work.
                Categories
                Research Article
                Biology and Life Sciences
                Organisms
                Bacteria
                Actinobacteria
                Mycobacterium Tuberculosis
                Biology and Life Sciences
                Physiology
                Respiratory Physiology
                Medicine and Health Sciences
                Physiology
                Respiratory Physiology
                Biology and Life Sciences
                Anatomy
                Respiratory System
                Bronchi
                Medicine and Health Sciences
                Anatomy
                Respiratory System
                Bronchi
                Biology and Life Sciences
                Microbiology
                Medical Microbiology
                Microbial Pathogens
                Bacterial Pathogens
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Pathogens
                Microbial Pathogens
                Bacterial Pathogens
                Biology and Life Sciences
                Organisms
                Bacteria
                Biology and Life Sciences
                Organisms
                Bacteria
                Staphylococcus
                Staphylococcus Aureus
                Biology and Life Sciences
                Microbiology
                Medical Microbiology
                Microbial Pathogens
                Bacterial Pathogens
                Staphylococcus
                Staphylococcus Aureus
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Pathogens
                Microbial Pathogens
                Bacterial Pathogens
                Staphylococcus
                Staphylococcus Aureus
                Biology and Life Sciences
                Microbiology
                Medical Microbiology
                Microbial Pathogens
                Bacterial Pathogens
                Pseudomonas Aeruginosa
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Pathogens
                Microbial Pathogens
                Bacterial Pathogens
                Pseudomonas Aeruginosa
                Biology and Life Sciences
                Organisms
                Bacteria
                Pseudomonas
                Pseudomonas Aeruginosa
                Medicine and Health Sciences
                Infectious Diseases
                Bacterial Diseases
                Tuberculosis
                Medicine and Health Sciences
                Tropical Diseases
                Tuberculosis
                Custom metadata
                All relevant data are within the manuscript and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article