9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Brain Magnetic Resonance Imaging Characteristics of Anti-Leucine-Rich Glioma-Inactivated 1 Encephalitis and Their Clinical Relevance: A Single-Center Study in China

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective: To characterize the magnetic resonance imaging (MRI) features of anti-leucine-rich glioma-inactivated 1 (LGI1) encephalitis and explore their clinical relevance.

          Methods: Patients with anti-LGI1 encephalitis who underwent MRI at our center were included in this study. Baseline and follow-up MRI characteristics were evaluated, and relationships between lesion location and clinical symptoms were analyzed. The extent of signal abnormalities within the lesion overlap region was measured and correlated with modified Rankin Scale scores and serum antibody titer.

          Results: Seventy-six patients were enrolled, of which 57 (75%) were classified as MR positive. Brain lesions were located in medial temporal lobe (MTL) (89%) and basal ganglia (BG) (28%). Hippocampus and amygdala were lesion hubs with more than 50% lesion overlap. BG lesions were found in 30% of patients with faciobrachial dystonic seizure (FBDS) and only 7% of patients without FBDS ( p = 0.013). Meanwhile, MTL lesions were more commonly observed in patients with memory impairment (70 vs. 0%, p = 0.017). MRI features included hyperintensity and edema at baseline, as well as hypointensity and atrophy at follow-up. Correlations between signal intensity of lesion hubs (including hippocampus and amygdala) and modified Rankin Scale scores were found on T2 ( r = 0.414, p < 0.001) and diffusion-weighted imaging ( r = 0.456, p < 0.001).

          Conclusion: MTL and BG are two important structures affected by anti-LGI1 encephalitis, and they are associated with distinctive symptoms. Our study provided evidence from Chinese patients that BG lesions are more commonly observed in patients with FBDS, potentially suggesting BG localization. Furthermore, in addition to supporting diagnosis, MRI has the potential to quantify disease severity.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Antibodies to Kv1 potassium channel-complex proteins leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 in limbic encephalitis, Morvan’s syndrome and acquired neuromyotonia

          Antibodies that immunoprecipitate 125I-α-dendrotoxin-labelled voltage-gated potassium channels extracted from mammalian brain tissue have been identified in patients with neuromyotonia, Morvan’s syndrome, limbic encephalitis and a few cases of adult-onset epilepsy. These conditions often improve following immunomodulatory therapies. However, the proportions of the different syndromes, the numbers with associated tumours and the relationships with potassium channel subunit antibody specificities have been unclear. We documented the clinical phenotype and tumour associations in 96 potassium channel antibody positive patients (titres >400 pM). Five had thymomas and one had an endometrial adenocarcinoma. To define the antibody specificities, we looked for binding of serum antibodies and their effects on potassium channel currents using human embryonic kidney cells expressing the potassium channel subunits. Surprisingly, only three of the patients had antibodies directed against the potassium channel subunits. By contrast, we found antibodies to three proteins that are complexed with 125I-α-dendrotoxin-labelled potassium channels in brain extracts: (i) contactin-associated protein-2 that is localized at the juxtaparanodes in myelinated axons; (ii) leucine-rich, glioma inactivated 1 protein that is most strongly expressed in the hippocampus; and (iii) Tag-1/contactin-2 that associates with contactin-associated protein-2. Antibodies to Kv1 subunits were found in three sera, to contactin-associated protein-2 in 19 sera, to leucine-rich, glioma inactivated 1 protein in 55 sera and to contactin-2 in five sera, four of which were also positive for the other antibodies. The remaining 18 sera were negative for potassium channel subunits and associated proteins by the methods employed. Of the 19 patients with contactin-associated protein-antibody-2, 10 had neuromyotonia or Morvan’s syndrome, compared with only 3 of the 55 leucine-rich, glioma inactivated 1 protein-antibody positive patients (P < 0.0001), who predominantly had limbic encephalitis. The responses to immunomodulatory therapies, defined by changes in modified Rankin scores, were good except in the patients with tumours, who all had contactin-associated-2 protein antibodies. This study confirms that the majority of patients with high potassium channel antibodies have limbic encephalitis without tumours. The identification of leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 as the major targets of potassium channel antibodies, and their associations with different clinical features, begins to explain the diversity of these syndromes; furthermore, detection of contactin-associated protein-2 antibodies should help identify the risk of an underlying tumour and a poor prognosis in future patients.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Antibody-Mediated Encephalitis

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Investigation of LGI1 as the antigen in limbic encephalitis previously attributed to potassium channels: a case series.

              Voltage-gated potassium channels are thought to be the target of antibodies associated with limbic encephalitis. However, antibody testing using cells expressing voltage-gated potassium channels is negative; hence, we aimed to identify the real autoantigen associated with limbic encephalitis. We analysed sera and CSF of 57 patients with limbic encephalitis and antibodies attributed to voltage-gated potassium channels and 148 control individuals who had other disorders with or without antibodies against voltage-gated potassium channels. Immunohistochemistry, immunoprecipitation, and mass spectrometry were used to characterise the antigen. An assay with HEK293 cells transfected with leucine-rich, glioma-inactivated 1 (LGI1) and disintegrin and metalloproteinase domain-containing protein 22 (ADAM22) or ADAM23 was used as a serological test. The identity of the autoantigen was confirmed by immunoabsorption studies and immunostaining of Lgi1-null mice. Immunoprecipitation and mass spectrometry analyses showed that antibodies from patients with limbic encephalitis previously attributed to voltage-gated potassium channels recognise LGI1, a neuronal secreted protein that interacts with presynaptic ADAM23 and postsynaptic ADAM22. Immunostaining of HEK293 cells transfected with LGI1 showed that sera or CSF from patients, but not those from control individuals, recognised LGI1. Co-transfection of LGI1 with its receptors, ADAM22 or ADAM23, changed the pattern of reactivity and improved detection. LGI1 was confirmed as the autoantigen by specific abrogation of reactivity of sera and CSF from patients after immunoabsorption with LGI1-expressing cells and by comparative immunostaining of wild-type and Lgi1-null mice, which showed selective lack of reactivity in brains of Lgi1-null mice. One patient with limbic encephalitis and antibodies against LGI1 also had antibodies against CASPR2, an autoantigen we identified in some patients with encephalitis and seizures, Morvan's syndrome, and neuromyotonia. LGI1 is the autoantigen associated with limbic encephalitis previously attributed to voltage-gated potassium channels. The term limbic encephalitis associated with antibodies against voltage-gated potassium channels should be changed to limbic encephalitis associated with LGI1 antibodies, and this disorder should be classed as an autoimmune synaptic encephalopathy. National Institutes of Health, National Cancer Institute, and Euroimmun. Copyright 2010 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurol
                Front Neurol
                Front. Neurol.
                Frontiers in Neurology
                Frontiers Media S.A.
                1664-2295
                12 January 2021
                2020
                : 11
                : 618109
                Affiliations
                [1] 1Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences , Beijing, China
                [2] 2Department of Biomedical Engineering, National University of Singapore , Singapore, Singapore
                [3] 3Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences , Beijing, China
                [4] 4The N.1 Institute for Health, National University of Singapore , Singapore, Singapore
                Author notes

                Edited by: Marcello Moccia, University of Naples Federico II, Italy

                Reviewed by: Rodolfo Gabriel Gatto, University of Illinois at Chicago, United States; Paulo Ribeiro Nóbrega, Federal University of Ceara, Brazil

                *Correspondence: Hongzhi Guan guanhz@ 123456263.net

                This article was submitted to Multiple Sclerosis and Neuroimmunology, a section of the journal Frontiers in Neurology

                †These authors have contributed equally to this work

                Article
                10.3389/fneur.2020.618109
                7835512
                33510707
                1056ccac-f909-4c42-a3ff-9fad2e2172f6
                Copyright © 2021 Shao, Fan, Luo, Wong, Zhang, Guan and Qiu.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 16 October 2020
                : 04 December 2020
                Page count
                Figures: 5, Tables: 1, Equations: 0, References: 39, Pages: 10, Words: 5558
                Categories
                Neurology
                Original Research

                Neurology
                mri,autoimmune diseases,encephalitis,basal ganglia,limbic system
                Neurology
                mri, autoimmune diseases, encephalitis, basal ganglia, limbic system

                Comments

                Comment on this article